• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Rössner, Carsten (9)
  • Schnorr, Claus Peter (4)
  • Seifert, Jean-Pierre (3)
  • Ritter, Harald (1)

Year of publication

  • 1996 (4)
  • 1997 (3)
  • 1994 (1)
  • 1995 (1)

Document Type

  • Report (5)
  • Article (1)
  • Conference Proceeding (1)
  • Doctoral Thesis (1)
  • Preprint (1)

Language

  • English (8)
  • German (1)

Has Fulltext

  • yes (9)

Is part of the Bibliography

  • no (9)

Keywords

  • Approximation algorithm (1)
  • Computational complexity (1)
  • Dirichlet bound (1)
  • Integer relations (1)
  • Kettenbruchentwicklung ; Dimension n ; Diophantische Approximation (1)
  • Label cover (1)
  • NP-hard (1)
  • Probabilistically checkable proofs (1)
  • computational complexity (1)
  • computational geometry (1)
+ more

Institute

  • Mathematik (9)
  • Informatik (8)

9 search hits

  • 1 to 9
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Computation of highly regular nearby points (1995)
Rössner, Carsten ; Schnorr, Claus Peter
We call a vector x/spl isin/R/sup n/ highly regular if it satisfies =0 for some short, non-zero integer vector m where <...> is the inner product. We present an algorithm which given x/spl isin/R/sup n/ and /spl alpha//spl isin/N finds a highly regular nearby point x' and a short integer relation m for x'. The nearby point x' is 'good' in the sense that no short relation m~ of length less than /spl alpha//2 exists for points x~ within half the x'-distance from x. The integer relation m for x' is for random x up to an average factor 2/sup /spl alpha//2/ a shortest integer relation for x'. Our algorithm uses, for arbitrary real input x, at most O(n/sup 4/(n+log A)) many arithmetical operations on real numbers. If a is rational the algorithm operates on integers having at most O(n/sup 5/+n/sup 3/(log /spl alpha/)/sup 2/+log(/spl par/qx/spl par//sup 2/)) many bits where q is the common denominator for x.
Kettenbruchentwicklung in beliebiger Dimension, Stabilität und Approximation (1996)
Rössner, Carsten
Wir behandeln Kettenbruchentwicklungen in beliebiger Dimension. Wir geben einen Kettenbruchalgorithmus an, der für beliebige Dimension n simultane diophantische Approximationen berechnet, die bis auf den Faktor 2 exp (n+2)/4 optimal sind. Für einen reellen Eingabevektor x := (x1,...,X n-1, 1) berechnet der Algorithmus eine Folge ganzzahliger Vektoren ....., so daß für i =1, ...., n-1 : | q exp (k) xi -pi exp (k)| <= 2 exp (n+2)/4 sqrt (1 + xi exp 2) / q exp (1/n-1). Nach Sätzen von Dirichlet und Borel ist die Schranke optimal in dem Sinne, als daß der Exponent 1/(n-1) im allgemeinen nicht erhöht werden kann. Der Algorithmus konstruiert eine Folge von Gitterbasen des Zn, welche die Gerade x R approximieren. Für gegebenes E > 0 findet der Algorithmus entweder eine Relation zu x, das heißt einen ganzzahligen zu x orthogonalen Vektor (ungleich Null), mit euklidischer Länge kleiner oder gleich E exp -1, oder er schließt Relationen zu x mit euklidischer Länge kleiner als E exp -1 aus. Der Algorithmus führt in der Dimension n und |log E| polynomial viele arithmetische Operationen auf rellen Zahlen in exakter Arithmetik aus. Für rationale Eingaben x := (p1, ....., pn)/pn, E>0 mit p1,.....,pn Teil von Z besitzt der Algorithmus polynomiale Bitkomplexität in O........ Eine Variante dieses Algorithmus konstruiert für Eingabevektoren x einen (von x nicht notwendigerweise verschiedenen) Nahebeipunkt x' zu x und eine kurze Relation zu x'. Im Falle x<>x können wir die Existenz von Relationen kleiner als (2E)exp -1 für Punkte in einer kleinen offenen Umgebung um x' ausschließen. Wir erhalten in diesem Sinne eine stetige untere Schranke für die Länge der kürzesten Relation zu Punkten in dieser Umgebung. Die für x' berechnete Relation ist bis auf einen in der Dimension n exponentiellen Faktor kürzeste Relation für x'. Zur Implementierung des Kettenbruchalgorithmus stellen wir ein numerisch stabiles Verfahren vor und berichten über experimentelle Ergebnisse. Wir geben untere Schranken für die Approximierbarkeit kürzester Relationen in der Maximum-Norm und minimaler diophantischer Approximationen an: Unter der Annahme, daß die Klasse NP nicht in der deterministischen Zeitklasse O(n exp poly log n) enthalten ist, zeigen wir: Es existiert kein Algorithmus, der für rationale Eingabevektoren x polynomial in der Bitlänge bin(x) von x ist und die in der Maximum-Norm kürzeste Relation bis auf einen Faktor 2 exp (log 0.5 - zeta bin(x)) approximiert. Dabei ist zeta eine beliebig kleine positive Konstante. Wir übertragen dieses Resultat auf das Problem, zu gegebenen rationalen Zahlen x1,....,xn-1 und einem rationalen E > 0 gute simultane diophantische Approximationen zu finden, das heißt rationale Zahlen p1/q,...; (p n-1/)q mit möglichst kleinem Hauptnenner q zu konstruieren, so daß max 1 <=i <= n-1 |q xi - pi| <= E. Wir zeigen unter obiger Annahme, daß kein Algorithmus existiert, der für gegebene rationale Zahlen x1,........,x n-1 und natürlicher Zahl N polynomial-Zeit in der Bitlänge bin(x) von x ist und simultane diophantische Approximationen berechnet, so daß max 1 <=i <= n-1 |q xi - pi| für q gehört zu [1, N] bis auf den Faktor 2 exp (log 0.5 - zeta bin(x)) minimal ist. Hierbei ist zeta wieder eine beliebig kleine positive Konstante.
Diophantine approximation of a plane (1997)
Rössner, Carsten ; Schnorr, Claus Peter
An optimal, stable continued fraction algorithm for arbitrary dimension (1996)
Rössner, Carsten ; Schnorr, Claus Peter
We analyse a continued fraction algorithm (abbreviated CFA) for arbitrary dimension n showing that it produces simultaneous diophantine approximations which are up to the factor 2^((n+2)/4) best possible. Given a real vector x=(x_1,...,x_{n-1},1) in R^n this CFA generates a sequence of vectors (p_1^(k),...,p_{n-1}^(k),q^(k)) in Z^n, k=1,2,... with increasing integers |q^{(k)}| satisfying for i=1,...,n-1 | x_i - p_i^(k)/q^(k) | <= 2^((n+2)/4) sqrt(1+x_i^2) |q^(k)|^(1+1/(n-1)) By a theorem of Dirichlet this bound is best possible in that the exponent 1+1/(n-1) can in general not be increased.
On the hardness of approximating shortest integer relations among rational numbers (1996)
Rössner, Carsten ; Seifert, Jean-Pierre
Given x small epsilon, Greek Rn an integer relation for x is a non-trivial vector m small epsilon, Greek Zn with inner product <m,x> = 0. In this paper we prove the following: Unless every NP language is recognizable in deterministic quasi-polynomial time, i.e., in time O(npoly(log n)), the &#8467;infinity-shortest integer relation for a given vector x small epsilon, Greek Qn cannot be approximated in polynomial time within a factor of 2log0.5 &#8722; small gamma, Greekn, where small gamma, Greek is an arbitrarily small positive constant. This result is quasi-complementary to positive results derived from lattice basis reduction. A variant of the well-known L3-algorithm approximates for a vector x small epsilon, Greek Qn the &#8467;2-shortest integer relation within a factor of 2n/2 in polynomial time. Our proof relies on recent advances in the theory of probabilistically checkable proofs, in particular on a reduction from 2-prover 1-round interactive proof-systems. The same inapproximability result is valid for finding the &#8467;infinity-shortest integer solution for a homogeneous linear system of equations over Q.
Approximating good simultaneous diophantine approximations is almost NP-hard (1997)
Rössner, Carsten ; Seifert, Jean-Pierre
Given a real vector alpha =(alpha1 ; : : : ; alpha d ) and a real number E > 0 a good Diophantine approximation to alpha is a number Q such that IIQ alpha mod Zk1 ", where k \Delta k1 denotes the 1-norm kxk1 := max 1id jx i j for x = (x1 ; : : : ; xd ). Lagarias [12] proved the NP-completeness of the corresponding decision problem, i.e., given a vector ff 2 Q d , a rational number " ? 0 and a number N 2 N+ , decide whether there exists a number Q with 1 Q N and kQff mod Zk1 ". We prove that, unless ...
The complexity of approximate optima for greatest common divisor computations (1996)
Rössner, Carsten ; Seifert, Jean-Pierre
We study the approximability of the following NP-complete (in their feasibility recognition forms) number theoretic optimization problems: 1. Given n numbers a1 ; : : : ; an 2 Z, find a minimum gcd set for a1 ; : : : ; an , i.e., a subset S fa1 ; : : : ; ang with minimum cardinality satisfying gcd(S) = gcd(a1 ; : : : ; an ). 2. Given n numbers a1 ; : : : ; an 2 Z, find a 1-minimum gcd multiplier for a1 ; : : : ; an , i.e., a vector x 2 Z n with minimum max 1in jx i j satisfying P n...
Factoring via strong lattice reduction algorithm : technical report (1997)
Ritter, Harald ; Rössner, Carsten
We address to the problem to factor a large composite number by lattice reduction algorithms. Schnorr has shown that under a reasonable number theoretic assumptions this problem can be reduced to a simultaneous diophantine approximation problem. The latter in turn can be solved by finding sufficiently many l_1--short vectors in a suitably defined lattice. Using lattice basis reduction algorithms Schnorr and Euchner applied Schnorrs reduction technique to 40--bit long integers. Their implementation needed several hours to compute a 5% fraction of the solution, i.e., 6 out of 125 congruences which are necessary to factorize the composite. In this report we describe a more efficient implementation using stronger lattice basis reduction techniques incorporating ideas of Schnorr, Hoerner and Ritter. For 60--bit long integers our algorithm yields a complete factorization in less than 3 hours.
A stable integer relation algorithm (1994)
Schnorr, Claus Peter ; Rössner, Carsten
We study the following problem: given x element Rn either find a short integer relation m element Zn, so that =0 holds for the inner product <.,.>, or prove that no short integer relation exists for x. Hastad, Just Lagarias and Schnorr (1989) give a polynomial time algorithm for the problem. We present a stable variation of the HJLS--algorithm that preserves lower bounds on lambda(x) for infinitesimal changes of x. Given x \in {\RR}^n and \alpha \in \NN this algorithm finds a nearby point x' and a short integer relation m for x'. The nearby point x' is 'good' in the sense that no very short relation exists for points \bar{x} within half the x'--distance from x. On the other hand if x'=x then m is, up to a factor 2^{n/2}, a shortest integer relation for \mbox{x.} Our algorithm uses, for arbitrary real input x, at most \mbox{O(n^4(n+\log \alpha))} many arithmetical operations on real numbers. If x is rational the algorithm operates on integers having at most \mbox{O(n^5+n^3 (\log \alpha)^2 + \log (\|q x\|^2))} many bits where q is the common denominator for x.
  • 1 to 9

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks