Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
Das Chromanol 293B stellt die Leitsubstanz einer möglicherweise neuen Kategorie von KlasseIIIAntiarrhythmika dar. Im Herzen inhibiert es potent und spezifisch den Kaliumkanal I Ks , der an der Repolarisation der Membran bei Ablauf eines Aktionspotentials beteiligt ist. Er ist aus der AlphaUntereinheit KCNQ1 und der BetaUntereinheit MinK aufgebaut. Es bestehen deutliche biophysikalische Unterschiede zwischen den Strömen homomerer KCNQ1 und heteromerer I Ks (KCNQ1/MinK)Kanäle. Die Koexpression mit MinK verändert aber auch die Pharmakologie von KCNQ1. In der vorliegenden Arbeit trugen zwei unabhängige Lösungsansätze dazu bei, die Interaktion der beiden Untereinheiten molekular besser zu verstehen. Dabei wurden als Methoden die zielgerichtete Mutagenese, die Expression der WildTypProteine und der Mutanten in XenopusOozyten und deren elektrophysiologische Analyse angewendet. Im ersten Teil wurde die Bindungsstelle des I Ks Inhibitors 293B molekular identifiziert, während im zweiten Teil der Mechanismus der Inaktivierung der AlphaUntereinheit KCNQ1 untersucht wurde. In den beiden Ansätzen wurde ausgenutzt, dass die zu KCNQ1 eng verwandten KCNQ2 Kanäle weder sensitiv gegenüber 293B waren noch eine Inaktivierung zeigten. Die Expression von MinKMutanten, die alle veränderbaren Regionen des Proteins abdeckten, ergab, dass keine dieser Mutationen die Affinität des I Ks Kanals gegenüber 293B wesentlich beeinflusste. Das war erstaunlich, da homomere KCNQ1Kanäle durch das Chromanol 293B um den Faktor 45 schwächer zu blockieren sind als I Ks Kanäle und da zusätzlich gezeigt wurde, dass sich auch das Ausmaß der Stereoselektivität von 293B und anderer verwandter I Ks Inhibitoren in Bezug auf KCNQ1 und I Ks stark unterscheidet. Es konnte aus den Ergebnissen indirekt vermutet werden, dass MinK offensichtlich auf allosterische Art die Affinität des Inhibitors erhöht. Um einen Hinweis auf die I Ks Spezifität des Blocks durch 293B auch innerhalb der KCNQ Familie zu erhalten, wurde zunächst die Inhibition der verwandten KCNQ2 und KCNQ3Kanäle getestet, die sich als kaum signifikant erwies. In diesem Zusammenhang wurde auch ein neues Mitglied der KCNQFamilie kloniert, KCNQ5, das schwach sensitiv gegen 293B war, nicht im Herzen vorkommt aber wahrscheinlich zusammen mit KCNQ2/KCNQ3 zum neurona len MStrom beiträgt. Dies ergab Hinweise darauf, dass von anderen KCNQKanälen differente Proteinsequenzen die hohe Sensitivität des KCNQ1Kanals gegenüber 293B determinieren. Die Bindungsstelle an der AlphaUntereinheit KCNQ1 wurde anschließend durch KCNQ1/KCNQ2 Chimären auf die innere Porenregion eingegrenzt. Durch detaillierte Untersuchung mithilfe von Punktmutationen identifizierten wir Aminosäuren in der Transmembranregion S6 (I337) und der Porenschleife H5(V307), deren Austausch gegen die entsprechenden KCNQ2 Aminosäuren die Affinität von 293B zu KCNQ1 sowie zu I Ks Kanälen um den Faktor 420 herabsetzten. Durch Analogiemodellierung mithilfe der bekannten Kristallstruktur des KcsA Kaliumkanals konnte ein 3DModell der KCNQ1Porenregion erstellt werden, aus dem sich ergab, dass die Seitenketten der Aminosäure Isoleucin 337 in das Lumen der inneren Pore gerichtet sind. Aus dem Modell konnte weiterhin das Phenylalanin 340 als in das Lumen gerichtet identifiziert werden. Dieses Ergebnis konnte durch weitere MutageneseExperimente evaluiert werden, aus denen hervorging, dass Veränderungen an dieser und benachbarten Positionen die Sensitivität sowohl von KCNQ1 als auch von I Ks Kanälen gegenüber 293B um den Faktor 10100 verminderten. Das 293BMolekül konnte so in das Modell integriert werden, dass sich attraktive Interaktionen mit diesen beiden Resten (F340 und I337) ausbilden. Die innere Porenregion stellt auch für viele Inhibitoren anderer Kaliumkanäle eine wichtige Determinante für hohe Affinität dar. Die in H5 gelegene Aminosäure V307 schien nach dem Modell nicht an einer 293BInteraktion direkt beteiligt zu sein. Es fiel aber bei der Charakterisierung auf, dass das veränderte Protein nicht mehr inaktivierte. Daher sollte ein Zusammenhang zwischen dem 293B Wirkmechanismus und der intrinsischen KCNQ1Inaktivierung untersucht werden. Es wurden wiederum durch einen Chimärenansatz zunächst die Regionen identifiziert, die für eine KCNQ1Inaktivierung notwendig sind. Anschließend wurde nach punktuellem Austausch von KCNQ1Aminosäuren gegen analoge KCNQ2Reste für eine weitere Position im Transmembransegment S5 (G272) ein Verlust der Inaktivierung festgestellt. Die zweite nicht inaktivierende Mutante G272C war WildTypgleich 293Bempfindlich, woraus sich vermuten ließ, dass die schwache Empfindlichkeit gegenüber 293B und der Verlust der Inaktivierung der KCNQ1Mutante V307L nicht in Zusammenhang stehen. Die Ergebnisse machten aber molekular den Unterschied der KCNQ1Inaktivierung zu den beiden klassischen Inaktivierungsarten von Kaliumkanälen, N und CTyp, deutlich. Zuvor war dies nur anhand unterschiedlicher biophysikalischer Eigenschaften gezeigt worden. Das zuvor erstellte KCNQ1 Modell unterstützte die Resultate, da sich in ihm die beiden Regionen S5 und die Porenhelix H5 etwa auf Höhe der beiden Aminosäuren V307 und G272 kreuzen, was eine Interaktion dieser Regionen suggeriert. Zudem ist bei der ein LongQTSyndrom verursachenden KCNQ1Mutation L273F die mutierte Stelle unmittelbar neben dem Valinrest 307 lokalisiert. Diese besonders stark inaktivierende LQT1Mutante erhielt auch unter der Einwirkung von MinK eine nachweisbare Inaktivierung aufrecht. Da die KCNQ1Inaktivierung durch MinKKoexpression normalerweise aufgehoben wird, spricht dies für eine pathophysiologische Relevanz der KCNQ1Inaktivierung.