Refine
Year of publication
- 2007 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Aminosäurensequenz (1)
- Lysozym (1)
- Magnetische Kernresonanz (1)
- Mehrdimensionale NMR-Spektroskopie (1)
- NMR spectroscopy (1)
- NMR-Spektroskopie (1)
- Proteinfaltung (1)
- hen egg white lysozyme (1)
- nicht-native Proteine (1)
- non-native proteins (1)
Institute
The formation and maintenance of a defined three-dimensional structure is a prerequisite for most proteins in order to fulfill their function in the native context. However, there are proteins, which are intrinsically unstructured and thus natively unfolded. In addition, the misfolding and aggregation of many proteins can lead to severe diseases. The investigation of non-native states of proteins significantly contributes to the understanding of protein folding and misfolding. Nuclear magnetic resonance (NMR) spectroscopy is the only known technique that can provide information on structure and dynamics of non-native states of proteins at atomic resolution. Unfolded and non-native states of proteins have to be treated as ensembles of rapidly interconverting conformers and their observed properties are ensemble and time averaged. In this thesis, hen egg white lysozyme (HEWL) and mutants thereof have been investigated by NMR spectroscopy. The reduction of its four disulfide bridges and the successive methylation of the cysteine residues renders HEWL permanently non-native (‘HEWL-SMe’). Alternatively, the exchange of the eight cysteines for alanines results in very similar states (‘all-Ala-HEWL’). Under these conditions, HEWL-SMe and all-Ala-HEWL do not resemble random coil conformations, but exhibit residual secondary and tertiary structure. The presence of hydrophobic clusters and long-range interactions around the proteins six tryptophan residues and the modulation of these properties by single-point mutants has been observed. For the NMR spectroscopic investigation, HEWL has been isotopically labelled in E. coli by expression into inclusion bodies. After purification, the 1HN, 15NH, 13Calpha, 13Cbeta, 13C’, 1Halpha and 1Hbeta resonances of HEWL-SMe and all-Ala-HEWL have been assigned almost completely using three-dimensional NMR experiments. The analysis of secondary chemical shifts revealed regions in the proteins sequence — particularly around the six tryptophan residues—with significantly populated alpha-helix like conformations. In order to further elucidate the influence of the tryptophan side chains, a set of two new pulse sequences has been developed that allowed for the successful assignment of the 13Cg, 15Ne and 1HNe resonances in these side chains. This knowledge was eventually exploited in the interpretation of two-dimensional 15N-1H photo-CIDNP spectra, which revealed a differential solvent accessibility of the tryptophan residues in all-Ala-HEWL but not in the single point mutant W62G-all-Ala-HEWL. In addition, heteronuclear R2 relaxation rates have been determined for the indole 15Ne nuclei of all-Ala-HEWL and W62G. While in the wild-type like all-Ala-HEWL, the rates are different among the six tryptophan residues, in W62G they are more uniform. Together with relaxation data from the amide backbone, these results indicate the significant destabilization of the hydrophobic clusters in the absence of W62. In contrast, in the W108G mutant the profile of the R2 relaxation rates was not found to be significantly altered. No evidence was found by R1rho relaxation rates and relaxation dispersion measurements for conformational exchange on slower (micro- to millisecond) timescales. Residual dipolar couplings have been determined for non-native HEWL in order to retrieve structural information of these states. The differences of the W62G and the wild-type like non-native HEWL is also picked up in NH-RDCs of these proteins aligned in polyacrylamide gels. Significant positive RDCs are observed in the regions of the hydrophobic clusters in all-Ala-HEWL, but to a much lesser degree in W62G. So far, all attempts to simulate RDCs from generated non-native ensembles failed even when including long-range contacts or specific phi/psi backbone angle propensities. However, the measured RDCs can be used to cross-validate structural ensembles of non-native HEWL generated by molecular dynamics simulations that are based on restraints from the other experimental data, such as the differential solvent accessibilities from the photo-CIDNP experiments and the data on the hydrophobic clustering gained from the combined mutational and relaxation studies. Finally, non-native HEWL has been investigated for the first time using two-dimensional NMR in organic solvents, which are able to induce secondary structures and ultimately lead to amyloid formation. Under these conditions severe line broadening was observed, which was attributed to exchange between different — mostly a-helical— conformations. In summary, in this thesis methods have been developed, optimized and successfully applied for the structural and dynamical characterization of non-native states of proteins and the effect of single-point mutants on the properties of such ensembles has been investigated. Data has been gained that can considerably contribute to the further elucidation of the nature of non-native states of HEWL by molecular dynamics simulations.