Refine
Year of publication
Document Type
- Preprint (34)
- Article (11)
- Conference Proceeding (2)
Language
- English (47)
Has Fulltext
- yes (47)
Is part of the Bibliography
- no (47)
Keywords
- Kollisionen schwerer Ionen (19)
- heavy ion collisions (18)
- Quark-Gluon-Plasma (11)
- quark-gluon-plasma (7)
- QGP (6)
- MEMOs (4)
- UrQMD (4)
- quark-gluon plasma (4)
- Drell-Yan (3)
- Quark Gluon Plasma (3)
Institute
We demonstrate that the creation of strange matter is conceivable in the midrapidity region of heavy ion collisions at Brookhaven RHIC and CERN LHC. A finite net-baryon density, abundant (anti)strangeness production, as well as strong net-baryon and net-strangeness fluctuations, provide suitable initial conditions for the formation of strangelets or metastable exotic multistrange ( baryonic) objects. Even at very high initial entropy per baryon SyAinit ¯ 500 and low initial baryon numbers of Ainit B ¯ 30 a quark-gluon-plasma droplet can immediately charge up with strangeness and accumulate net-baryon number. PACS numbers: 25.75.Dw, 12.38.Mh, 24.85.+
In the framework of the relativistic quantum dynamics approach we investigate antiproton observables in Au-Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p(y) of p's shows the opposite sigh of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The "antiflow" of p's is also predicted at 2A GeV and at 160 A GeV and appears at all energies also for pi's and K's. These predicted p anticorrelations are a direct proof of strong p annihilation in massive heavy ion reactions.
In the framework of the relativistic quantum molecular dynamics approach (RQMD) we investigate antideuteron (d) observables in Au+Au collisions at 10.7 AGeV. The impact parameter dependence of the formation ratios d/p2 and d/p2 is calculated. In central collisions, the antideuteron formation ratio is predicted to be two orders of magnitude lower than the deuteron formation ratio. The d yield in central Au+Au collisions is one order of magnitude lower than in Si+Al collisions. In semicentral collisions di erent configuration space distributions of p s and d s lead to a large squeeze out e ect for antideuterons, which is not predicted for the p s.
In the framework of RQMD we investigate antiproton observables in massive heavy ion collisions at AGS energies and compare to preliminary results of the E878 collaboration. We focus here on the considerable influence of the real part of an antinucleon nucleus optical potential on the ¯p momentum spectra. Pacs-numbers: 14.20 Dh, 25.70.-z
We calculate the evolution of quark-gluon-plasma droplets during the hadronization in a thermodynamical model. It is speculated that cooling as well as strangeness enrichment allow for the formation of strangelets even at very high initial entropy per baryon S/Ainit H 500 and low initial baryon numbers of Ainit B H 30. It is shown that the droplet with vanishing initial chemical potential of strange quarks and a very moderate chemical potential of up/down quarks immediately charges up with strangeness. Baryon densi- ties of H 2 0 and strange chemical potentials of µs > 350 MeV are reached if strangelets are stable. The importance of net baryon and net strangeness fluctuations for the possible strangelet formation at RHIC and LHC is em- phasized. Pacs-Classif.: 25.15.tr, 12.38.Mh, 24.85.tp
We present a RQMD calculation of antiproton yields and their momentum distribution in Ne + NaF collisions at 2 GeV/u. The antiprotons can be produced below threshold due to multi-step excitations for which meson-baryon interactions play a considerable role. In this system the annihilation probability for an initially produced antiproton is predicted to be about 65%.
The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.