Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- MYC (1)
- NOTCH (1)
- USP28 (1)
- squamous cell carcinoma (1)
- ΔNp63 (1)
Institute
- Geowissenschaften (4)
- Biochemie und Chemie (2)
- ELEMENTS (1)
- Physik (1)
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
In der vorliegenden Arbeit wurden Sekundärmetabolite aus marinen Wirbellosen der Nordsee, arktischen und antarktischen Gewässern untersucht. Ausgehend von Untersuchungen zur marinen chemischen Ökologie von Haliclona viscosa und physiologischen Effekten auf die Kieme der Krabbe Carcinus maenas wurden verschiedene Alkaloide und Cholesterole isoliert (siehe Abbildung 25). Vier unbekannte Alkaloide konnten erstmalig aus Haliclona viscosa isoliert werden. Sie leiten sich von 3-Alkylpyridin-Alkaloiden ab, die für Schwämme der Gattung Haliclona charakteristisch sind. Die Strukturaufklärung erfolgte durch den Einsatz von NMRSpektroskopie und Massenspektrometrie. Die symmetrischen bzw. pseudo-symmetrischen Eigenschaften erschwerten im besonderen Maße die Strukturaufklärung. Die Isolation von Haliclamin C und D sowie Viscosalin ermöglichte es, daß für sie ökologische Funktionen nachgewiesen werden konnten [33, 34], die dem Schwamm Haliclona viscosa in seinem Habitat Vorteile im Kampf um das Überleben bringen. Viscosamin ist das erste natürlich vorkommende zyklische Trimer eines 3-Alkylpyridin-Alkaloids, daß aus einer marinen Umgebung stammt. Es schließt eine Lücke zwischen monomeren, dimeren und polymeren 3-Alkylpyridin-Alkaloiden. Aus dem bisher noch nicht chemisch untersuchten Borstenwurm Laetmonice producta, konnte Homarin isoliert werden [81-84]. Homarin zeigte einen bisher unbekannten physiologischen Effekt auf die Kieme eines potentiellen Räubers [35]. Ob Homarin aufgrund seiner physiologischen Wirkung den Borstenwurm vor z.B. räuberischen Krebstieren schützen kann, muß noch mit weiteren Versuchen geklärt werden. Enthält 3 Art. aus versch. Zeitschr.: 1 Christian A. Volk and Matthias Köck: Viscosamine: The First Naturally Occuring Trimeric 3-Alkyl Pyridinium Alkaloid ; 2 Christian A. Volk, Heike Lippert, Ellen Lichte, and Matthias Köck: Two New Haliclamines from the Arctic Sponge Haliclona viscosa, European Journal of Organic Chemistry 2004, im Druck ; 3 Christian A. Volk and Matthias Köck: Viscosaline: New 3-Alkyl Pyridinium Alkaloid from the Artic Sponge Haliclona viscosa, Organic & Biomolecular Chemistry 2004, im Druck
The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome‐mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9‐engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
Estimates of the recovery time of stratospheric ozone heavily rely on the exact knowledge of the processes that lead to the decomposition of the relevant halogenated source gases. Crucial parameters in this context are Fractional Release Factors (FRFs) as well as stratospheric lifetimes and Ozone Depletion Potentials (ODPs). We here present data from the analysis of air samples collected between 2009 and 2011 on board research aircraft flying in the mid- and high latitudinal stratosphere and infer the above-mentioned parameters for ten major source gases:CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF2ClCFCl2(CFC-113), CCl4 (carbon tetrachloride),CH3CCl3 (methyl chloroform), CHF2Cl (HCFC-22), CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), CF2ClBr (H-1211), and CF3Br (H-1301). The inferred correlations of their FRFs with mean ages of air reveal less decomposition as compared to previous studies for most compounds. When using the calculated set of FRFs to infer equivalent stratospheric chlorine we find a reduction of more than 20% as compared to the values inferred in the most recent Scientific Assessment of Ozone Depletion by the World Meteorological Organisation (WMO, 2011). We also note that FRFs and their correlations with mean age are not generally time-independent as often assumed. The stratospheric lifetimes were calculated relative to that of CFC-11. Within our uncertainties the inferred ratios between lifetimes agree with those between stratospheric lifetimes from recent WMO reports except for CFC-11, CFC-12 and CH3CCl3. Finally we calculate lower ODPs than WMO for six out of ten compounds with changes most pronounced for the three HCFCs. Collectively these newly calculated values may have important implications for the severity and recovery time of stratospheric ozone loss.
Estimates of the recovery time of stratospheric ozone heavily rely on the exact knowledge of the processes that lead to the decomposition of the relevant halogenated source gases. Crucial parameters in this context are fractional release factors (FRFs) as well as stratospheric lifetimes and ozone depletion potentials (ODPs). We here present data from the analysis of air samples collected between 2009 and 2011 on board research aircraft flying in the mid- and high-latitude stratosphere and infer the above-mentioned parameters for ten major source gases: CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF2ClCFCl2 (CFC-113), CCl4 (carbon tetrachloride), CH3CCl3 (methyl chloroform), CHF2Cl (HCFC-22), CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), CF2ClBr (H-1211), and CF3Br (H-1301). The inferred correlations of their FRFs with mean ages of air reveal less decomposition as compared to previous studies for most compounds. When using the calculated set of FRFs to infer equivalent stratospheric chlorine, we find a reduction of more than 20% as compared to the values inferred in the most recent Scientific Assessment of Ozone Depletion by the World Meteorological Organisation (WMO, 2011). We also note that FRFs and their correlations with mean age are not generally time-independent as often assumed. The stratospheric lifetimes were calculated relative to that of CFC-11. Within our uncertainties the ratios between stratospheric lifetimes inferred here agree with the values in recent WMO reports except for CFC-11, CFC-12 and CH3CCl3. Finally, we calculate lower ODPs than recommended by WMO for six out of ten compounds, with changes most pronounced for the three HCFCs. Collectively these newly calculated values may have important implications for the severity and recovery time of stratospheric ozone loss.