Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- energy transduction (2)
- Calcium ATPase (1)
- Calcium-ATPase (1)
- Computersimulation (1)
- Elektrostatik (1)
- Energietransduktion (1)
- Membranproteine (1)
- Molekulardynamik (1)
- Natrium-Kalium-ATPase (1)
- P-Typ-ATPasen (1)
Institute
- Physik (2)
Die P-Typ-ATPasen finden sich in allen Domänen des Lebens und stellen die größte Gruppe aktiver Ionentransporter in Zellen dar. Es handelt sich bei den P-Typ-ATPasen um integrale Membranproteine, die eine große Anzahl verschiedenster Ionen aktiv über eine biologische Membran transportieren. Die für diesen Ionentransport notwendige Energie wird durch Bindung und Hydrolyse von Adenosintriphosphat (ATP) und durch Phosphorylierung des Enzyms gewonnen. Diese, im cytoplasmatischen Teil gewonnene Energie, muss für den Ionentransport von der Phosphorylierungsstelle zur räumlich entfernten transmembranen Ionenbindungsstelle übertragen werden, bei dem das Protein einem Reaktionszyklus mit zwei Hauptkonformationszuständen E1 und E2 unterliegt. Zwischen diesen beiden Zuständen finden große strukturelle Änderungen statt, durch die die Ionenaffintät und die Zugänglichkeit der Ionenbindungsstelle reguliert wird. Da dieser Mechanismus der Energiegewinnung für alle Ionenpumpen dieser Art ähnlich ist, wurde die Ca2+-ATPase und die Na+/K+-ATPase als Modellproteine für die Untersuchung molekularer Mechanismen in P-Typ-ATPasen ausgewählt. Im Rahmen der vorliegenden Arbeit soll die Energietransduktion in P-Typ-ATPasen im Allgemeinen und der Protonengegentransport bzw. ein potentieller Protonentransportweg in der Ca2+-ATPase im Speziellen untersucht werden. Die beiden oben genannten Mechanismen sollen mittels computergestützter Methoden analysiert werden. Vor allem die Ca2+-ATPase ist prädestiniert für computergestützte Untersuchungen, da für diese sehr viele hochaufgelöste Röntgenstrukturdaten vorliegen, wenn auch bisher aufgrund der Größe und Komplexität des Systems nur sehr wenige theoretische Arbeiten durchgeführt wurden. Um den Energietransduktionsmechanismus in P-Typ-ATPasen zu untersuchen, wurde mittels Elektrostatik-Rechnungen der Einfluss eines elektrischen Feldes auf die verschiedenen Transmembranhelices untersucht. Dazu wurde ein Simulationssystem entwickelt, welches aus einem molekularen Kondensator besteht, der im Modell das Anlegen eines homogenen elektrischen Feldes über den Transmembranbereich simuliert. Da es sich bei dem Energietransduktionsmechanismus um einen dynamischen Prozess handelt, wurden die Elektrostatik-Rechnungen um Molekulardynamik-Simulationen erweitert. Mit diesen kann die konformelle Dynamik der P-Typ-ATPasen während der Energietransduktion in die Elektrostatik-Rechnungen einbezogen werden. Aus Spannungsklemmen-Fluorometrie-Experimenten, bei denen eine Spannung über eine Membran angelegt wird, kann geschlossen werden, dass die Helix M5 für die Energietransduktion verantwortlich ist. Mit den in dieser Arbeit durchgeführten Elektrostatik-Rechnungen konnte für verschiedene Enzymzustände der Ca2+-ATPase und für die Na+/K+-ATPase gezeigt werden, dass die Helix M5 die größten Konformeränderungen aufgrund des elektrischen Feldes aufweist. Durch die Erweiterung der Elektrostatik-Rechnungen um die Methode der Molekulardynamik-Simulation konnte zusätzlich die elektrische Feldstärke reduziert werden. Auch dabei zeigte sich, dass auf der Helix M5 die meisten Rotameränderungen durch das elektrische Feld induziert werden. Die aus Experimenten vermutete Rolle der Helix M5 als wichtiges Energietransduktionselement ließ sich mit diesen Simulationsrechnungen bestätigen. Um einen möglichen Protonenweg durch den Transmembranbereich der Ca2+-ATPase aufzuklären, wurden explizite Wassermoleküle in sechs verschiedene Enzymzustände der Ca2+-ATPase eingefügt. Aus Experimenten ist bekannt, dass in der Ca2+-ATPase ein Protonengegentransport stattfindet. Deshalb wurden für verschiedene Enzymzustände der Ca2+-ATPase mittels Elektrostatik-Rechnungen die Protonierungen der eingefügten Wassermoleküle sowie der titrierbaren Aminosäuren bestimmt. Aus den Ergebnissen dieser Rechnungen kann geschlossen werden, dass es sich bei dem Protonentransfer nicht um einen linearen Transport der Protonen handelt. Die Untersuchungen zeigen einen mehrstufigen Prozess, an dem Protonen in verschiedenen Transmembranbereichen der Ca2+-ATPase beteiligt sind. Anhand der berechneten Protonierungszustände der eingefügten Wassermoleküle und der pK-Werte der Aminosäuren im Transmembranbereich konnte weiterhin ein möglicher Protonenweg identifiziert werden.
P-type ATPases are membrane proteins acting as ion pumps that drive an active transport of cations across the membrane against a concentration gradient. The required energy for the ion transport is provided by binding and hydrolysis of ATP. A reaction mechanism of ion transport and energy transduction is assumed to be common for all P-type ATPases and generally described by the Post-Albers cycle. Transient currents and charge translocation of P-type ATPases were extensively investigated by electrical measurements that apply voltage jumps to initiate the reaction cycle. In this study, we simulate an applied voltage across the membrane by an electric field and perform electrostatic calculations in order to verify the experimentally-driven hypothesis that the energy transduction mechanism is regulated by specific structural elements. Side chain conformational and ionization changes induced by the electric field are evaluated for each transmembrane helix and the selectivity in response is qualitatively analyzed for the Ca2+-ATPase as well as for structural models of the Na+/K+-ATPase. Helix M5 responds with more conformer changes as compared to the other transmembrane helices what is even more emphasized when the stalk region is included. Thus our simulations support experimental results and indicate a crucial role for the highly conserved transmembrane helix M5 in the energy transduction mechanism of P-type ATPases.