Refine
Document Type
- Conference Proceeding (2)
- Article (1)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- lattice (1)
- particle physics (1)
- quantum chromodynamics (1)
- quark gluon plasma (1)
- sign problem (1)
- thermal transition (1)
Institute
QCD with imaginary chemical potential is free of the sign problem and exhibits a rich phase structure constraining the phase diagram at real chemical potential. We simulate the critical end point of the Roberge- Weiss transition at imaginary chemical potential for Nf 1⁄4 2 QCD on Nτ 1⁄4 6 lattices with standard Wilson fermions. As found on coarser lattices, the Roberge-Weiss end point is a triple point connecting the deconfinement/chiral transitions in the heavy/light quark mass region and changes to a second-order end point for intermediate masses. These regimes are separated by two tricritical values of the quark mass, which we determine by extracting the critical exponent ν from a systematic finite size scaling analysis of the Binder cumulant of the imaginary part of the Polyakov loop. We are able to explain a previously observed finite size effect afflicting the scaling of the Binder cumulant in the regime of three-phase coexistence. Compared to Nτ 1⁄4 4 lattices, the tricritical masses are significantly shifted. Exploratory results on Nτ 1⁄4 8 as well as comparison with staggered simulations suggest that much finer lattices are needed before a continuum extrapolation becomes feasible.
Pseudo-Critical Temperature and Thermal Equation of State from Nf = 2 Twisted Mass Lattice QCD
(2012)
We report about the current status of our ongoing study of the chiral limit of two-flavor QCD at finite temperature with twisted mass quarks. We estimate the pseudo-critical temperature Tc for three values of the pion mass in the range of mPS ~ 300 and 500 MeV and discuss different chiral scenarios. Furthermore, we present first preliminary results for the trace anomaly, pressure and energy density. We have studied several discretizations of Euclidean time up to Nt = 12 in order to assess the continuum limit of the trace anomaly. From its interpolation we evaluate the pressure and energy density employing the integral method. Here, we have focussed on two pion masses with mPS ~ 400 and 700 MeV.
LatticeQCD using OpenCL
(2011)
The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang.
The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD).
These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today.
In the course of this thesis, the LQCD application cl2qcd has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. cl2qcd constitutes the first application for Wilson type fermions in OpenCL.
It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential.
Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite temperature transition in the Nf=2 chiral limit at zero chemical potential. It is not known if it is of first or second order. To this end, simulations utilising Twisted Mass Wilson fermions aiming at the chiral limit are presented in this thesis.
Another possibility is the investigation of QCD at purely imaginary chemical potential. In this region, QCD is known to posses a rich phase structure, which can be used to constrain the phase diagram of QCD at real chemical potential and to clarify the nature of the Nf=2 chiral limit. This phase structure is studied within this thesis, in particular the nature of the Roberge-Weiss endpoint is mapped out using Wilson fermions.