Refine
Year of publication
Document Type
- Article (13)
- Working Paper (2)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Formale Semantik (2)
- Generative Transformationsgrammatik (2)
- Herausstellung (2)
- Kongress (2)
- Syntax (2)
- Thema-Rhema-Gliederung (2)
- Topikalisierung (2)
- Wortstellung (2)
- Amygdala (1)
- Batten disease (1)
n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models.
his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.
We present data on charged kaons (K±) and ϕ mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K− and ϕ mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The ϕ/K− multiplicity ratio is found to be surprisingly high with a value of 0.52±0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K− transverse-mass spectra can be explained solely by feed-down, which substantially softens the spectra of K− mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze-out temperatures of K+ and K− mesons caused by different couplings to baryons.
We investigate identical pion HBT intensity interferometry in central Au+Au collisions at 1.23A GeV. High-statistics π−π− and π+π+ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinally comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
The Education Against Tobacco (EAT) network delivers smoking prevention advice in secondary schools, typically using the mirroring approach (i.e., a "selfie" altered with a face-aging app and shared with a class). In November 2017, however, the German assembly of EAT opted to expand its remit to include nursing students. To assess the transferability of the existing approach, we implemented it with the self-developed face-aging app "Smokerface" (=mixed − methods approach) in six nursing schools. Anonymous questionnaires were used to assess the perceptions of 197 students (age 18–40 years; 83.8% female; 26.4% smokers; 23.3% daily smokers) collecting qualitative and quantitative data for our cross-sectional study. Most students perceived the intervention to be fun (73.3%), but a minority disagreed that their own animated selfie (25.9%) or the reaction of their peers (29.5%) had motivated them to stop smoking. The impact on motivation not to smoke was considerably lower than experienced with seventh graders (63.2% vs. 42.0%; notably, more smokers also disagreed (45.1%) than agreed (23.5%) with this statement. Agreement rates on the motivation not to smoke item were higher in females than in males and in year 2–3 than in year 1 students. Potential improvements included greater focus on pathology (29%) and discussing external factors (26%). Overall, the intervention seemed to be appealing for nursing students
Hintergrund: Ab Frühjahr 2020 kam es zur weltweiten Verbreitung von SARS-CoV‑2 mit der heute als erste Welle der Pandemie bezeichneten Phase ab März 2020. Diese resultierte an vielen Kliniken in Umstrukturierungen und Ressourcenverschiebungen. Ziel unserer Arbeit war die Erfassung der Auswirkungen der Pandemie auf die universitäre Hals-Nasen-Ohren(HNO)-Heilkunde für die Forschung, Lehre und Weiterbildung. Material und Methoden: Die Direktorinnen und Direktoren der 39 Universitäts-HNO-Kliniken in Deutschland wurden mithilfe einer strukturierten Online-Befragung zu den Auswirkungen der Pandemie im Zeitraum von März bis April 2020 auf die Forschung, Lehre und die Weiterbildung befragt. Ergebnisse: Alle 39 Direktorinnen und Direktoren beteiligten sich an der Umfrage. Hiervon gaben 74,4 % (29/39) an, dass es zu einer Verschlechterung ihrer Forschungstätigkeit infolge der Pandemie gekommen sei. Von 61,5 % (24/39) wurde berichtet, dass pandemiebezogene Forschungsaspekte aufgegriffen wurden. Von allen Kliniken wurde eine Einschränkung der Präsenzlehre berichtet und 97,5 % (38/39) führten neue digitale Lehrformate ein. Im Beobachtungszeitraum sahen 74,4 % der Klinikdirektoren die Weiterbildung der Assistenten nicht gefährdet. Schlussfolgerung: Die Ergebnisse geben einen Einblick in die heterogenen Auswirkungen der Pandemie. Die kurzfristige Bearbeitung pandemiebezogener Forschungsthemen und die Einführung innovativer digitaler Konzepte für die studentische Lehre belegt eindrücklich das große innovative Potenzial und die schnelle Reaktionsfähigkeit der HNO-Universitätskliniken, um auch während der Pandemie ihre Aufgaben in der Forschung, Lehre und Weiterbildung bestmöglich zu erfüllen.