Refine
Document Type
- Article (34)
- diplomthesis (1)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (37)
Is part of the Bibliography
- no (37)
Institute
- Physik (36)
Der STAR Level-3 Trigger
(2002)
Schwerionen-Collider-Experimente, wie das STAR-Experiment am RHIC (BNL) oder das geplante ALICE-Experiment am LHC (CERN) untersuchen Schwerionenkollisionen bei Schwerpunktsenergien von Wurzel aus SNN = 200 GeV (RHIC), bzw. Wurzel aus sNN = 5, 5 TeV (ALICE). In diesen Kollisionen werden mehrere tausend geladene Teilchen produziert, die in STAR und ALICE in großvolumigen TPCs gemessen werden. Das Datenvolumen erreicht dabei bis zu 10 MB (STAR) und 60 MB (ALICE) pro Ereignis. Aufgrund der hohen Luminosität der Collider könnten die Experimente zentrale Schwerionenkollisionen mit einer Rate bis zu 100 Hz bzw. 200 Hz (ALICE) untersuchen. Die dabei entstehenden Datenraten im Bereich mehrerer GB/s sind mit heutiger Technologie jedoch nicht mehr einfach zu speichern. Deshalb kann nur ein Bruchteil der zur Verfügung stehenden Ereignisse aufgezeichnet werden. Aufgrund der exponentiellen Entwicklung der CPU-Leistung wird es jedoch möglich, die Rekonstruktion von Ereignissen während der Datennahme in Echtzeit durchzuführen. Basierend auf den rekonstruierten Spuren in den Detektoren kann die Entscheidung getroffen werden, ob ein Ereignis gespeichert werden soll. Dies bedeutet, dass die begrenzte Speicherbandbreite gezielt mit Ereignissen, die eine interessierende physikalische Observable beinhalten, angereichert werden kann. Ein solches System zur Ereignisselektion wird als Level-3-Trigger oder allgemeiner als High Level Trigger bezeichnet. Am STAR-Experiment wurde erstmals in einem Schwerionenexperiment solch ein Level-3-Triggersystem aufgebaut. Es besteht aus 432 i960-CPUs, auf speziell gefertigten Receiver Boards für die paralelle Clusterrekonstruktion in der STARTPC. 52 Standard-Computer mit ALPHA- bzw. Pentium-CPUs rekonstruieren die Spuren geladener Teilchen und tre.en eine Triggerentscheidung. Dieses System ermöglicht die Echtzeit-Rekonstruktion zentraler Au-plus-Au-Kollisionen mit anschliessender Analyse durch einen Trigger-Algorithmus mit einer Rate von 40-50 Hz. Die Qualität, die mit dieser schnellen Analyse erreicht wird, kann mit der Qualität der STAR-Offline-Rekonstruktion verglichen werden. Der Level-3-Clusterfinder erreicht in Bezug auf Ortsauflösung und Rekonstruktionseffizienz dieselbe Qualität wie der Offline-Clusterfinder. Der Level-3-Trackfinder erreicht bei Rekonstruktionseffizienz und Impulsauflösung 10-20% schlechtere Werte als der Offline- Trackfinder. Die Anwendung eines Level-3-Triggers besteht in der Messung von seltenen Observablen ("rare Probes"), die ohne eine Anreicherung nicht, oder nur schwer, meßbar wären. In den Jahren 2000 und 2001 wurden erste Triggeranwendungen für das STARLevel- 3-System erprobt. In ultraperipheren Au-plus-Au-Kollisionen wurden po-Kandidaten schon im Jahr 2000 selektiert. Während der Strahlzeit des Jahres 2001 wurde das Level-3-System erstmals zum Triggern in zentralen Au-plus-Au-Kollisionen eingesetzt. Die Triggeralgorithmen beinhalteten einen Õ-Trigger, einen 3He-Trigger und einen Algorithmus zur Anreicherung von Spuren hohen Impulses in der Akzeptanz des RICH-Detektors. Das STAR Level-3-System ist in der Lage zehnmal mehr Ereignisse zu analysieren, als gespeichert werden können. Aufgrund der begrenzten Luminosität des RHIC-Beschleunigers, konnten die Level-3 Trigger erst zum Ende der Strahlzeit eingesetzt werden. Den genannten Algorithmen standen zusätzlich zu den 3 · 10 hoch 6 gespeicherten zentralen Ereignissen, 6 · 10 hoch 5 zentrale Ereignisse zur Analyse zur Verfügung. Mit diesem begrenzten Anreicherungsfaktor von 20% blieb das System hinter seinen Möglichkeiten zurück. Es konnte jedoch gezeigt werden, dass das STAR Level-3-System in der erwarteten Qualität und Stabilität funktioniert.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[sNN]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[sNN]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<pT<12 GeV/c. The collision energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
We present the results of charged particle fluctuations measurements in Au+Au collisions at sqrt[sNN ]=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark-gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a heavy ion jet interaction generation model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.