Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- AVA (1)
- C. elegans (1)
- Chemoembolization (1)
- DSM (1)
- HCC (1)
- Habituation (1)
- Lipidol (1)
- Local control (1)
- Optogenetik (1)
- Rückzugsreflex (1)
Institute
- Biochemie und Chemie (3)
- Medizin (1)
Habituation ist eine der einfachsten Formen des Gedächtnisses. Hierbei handelt es sich um die erlerne Gewöhnung an einen harmlosen Reiz. Dies bedeutet, dass nach mehrfacher wiederholter Repräsentation eines harmlosen Reizes die Reaktion darauf stetig abnimmt, bis sie völlig zum erliegen kommt. Je nach Trainingsprotokoll kann diese Gewöhnung bis zu mehren Tagen andauern. Habituation ist hoch konserviert und ein Verhaltensmuster, dass auch bei sehr einfachen vielzelligen Organismen zu finden ist und untersucht werden kann. Zur Untersuchung des Zusammenspiels innerhalb eines neuronalen Netzwerkes, welches für die Habituation des Rückzugsreflexes (Ausweichreaktion nach Berührung) verantwortlich ist wurde hier der Fadenwurm Caenohabditis elegans (C. elegans) als Modell Organismus verwendet. Aufgrund seines einfachen, nur 302 Zellen umfassenden, Nervensystems eignet sich C. elegans sehr gut für Grundlagenforschung in diesem Bereich. Das neuronale Netzwerk, das verantwortlich ist für den Rückzugsreflex ist in drei Ebenen organisiert. Wahrgenommen wird der Reiz von sensorischen Neuronen (ASH, ALM, AVM, PLM, PVM). Die Weiterleitung erfolgt über verschiedene Interneuronen (AVA, AVB, AD, AVE, PVC) hin zu den Motorneuronen, welche die Muskeln enervieren und somit die Reaktion auf den in erster Ebenen wahrgenommen Reiz auslösen.
Mit Hilfe von optogenetischen Werkzeugen wurde hier Untersucht welche Rolle einzelne Zellen innerhalb dieses Netzwerkes innehaben und an welcher Stelle innerhalb des Netzwerkes die kurzzeitige Habituation des Reizes, nach einem Einfachen Lernprotokoll stattfindet. Zuerst musste eine Möglichkeit gefunden werden die zur Verfügung stehenden optogenetischen Werkzeuge zellspezifisch zu exprimieren. In dieser Arbeit wurden hierfür Rekombinasesysteme verwendet, die es ermöglichten zur Expression eine Kombination aus 2 verschiedenen Promotoren zu verwenden. Beide Promotoren dürfen hierbei nur in einer Zelle, der Zielzelle, überlappen. Es konnte zellspezifische Expression des Kationenkanals Chanelrhodopsin 2 (ChR2) in den beiden Zellparen AVAL/R und ASHL/R (nimmt aversive Reize wahr) erreicht werden.
Zur Untersuchung der Habituation wurde zusätzlich noch ein Wurmstamm verwendet, welcher ChR2 unter dem mec-4 Promotor exprimiert. ChR2 ist hier in den Mechanorezeptorneuronen (MRN) ALM, AVM, PLM und PVM exprimiert. Die hier durchgeführten Experimente deuten darauf hin das den MRNs die Größte Rolle bei der Ausbildung einer Habituation zukommt. Es gibt jedoch auch Hinweise darauf, dass AVA zusätzlich eine Rolle spielt.
Im weiteren Verlauf der Arbeit wurde die Rolle von AVA genauer untersucht. AVA gilt als der Hauptsignalgeber für eine Rückwärtsbewegung (spontan und nach Reizempfang). Es konnte gezeigt werden dass eine Unterbrechung der ’Gap Junktionen’ zwischen AVA und PVC eine stärkere Reaktion zur Folge haben. AVA scheint also durch PVC inhibiert zu werden. Ebenfalls mit AVA direkt interagierende Neuronen sind AVD und AVE. Mit den hier zur Verfügung stehenden Mitteln konnte die genaue Modulation von AVA durch diese Zellen jedoch nicht gezeigt werden.
In dieser Arbeit konnte der Grundstein für eine funktionale Aufklärung des Nervensystems von C. elegans gelegt werden. Vor allem durch die Möglichkeit der zellspezifischen Expression kann es zukünftig gelingen das Zusammenspiel der einzelnen Nervenzellen und ihren Anteil an einem bestimmtem Verhalten zu Untersuchen.
Background: To evaluate survival data and local tumor control after transarterial chemoembolization in two groups with different embolization protocols for the treatment of HCC patients.
Methods: Ninty-nine patients (mean age: 63.6 years), 78 male (78.8%) with HCC were repeatedly treated with chemoembolization in 4-week-intervals. Eighty-eight patients had BCLC-Stage-B and in 11 patients, chemoembolization was performed for bridging (BCLC-Stage-A). In total, 667 chemoembolization treatments were performed (mean 6.7 treatments/patient). The administered chemotherapeutic agent included mitomycin. For embolization, lipiodol only (n = 51;51.5%; mean age 63.8 years; 38 male), or lipiodol plus degradable starch microspheres (DSM) (n = 48; 48.5%; mean age 63.4 years; 40 male) were used. The local tumor response was assessed by MRI using Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). Patient survival times were evaluated using Kaplan-Meier curves and log-rank tests.
Results: The local tumor control in the lipiodol-group was: PR (partial response) in 11 (21.6%), SD (stable disease) in 32 (62.7%) and PD (progressive disease) in 8 cases (15.7%). In the lipiodol-DSM-group, PR was seen in 14 (29.2%), SD in 22 (45.8%), and PD in 12 (25.0%) individuals (p = 0.211). The median survival of patients after chemoembolization with lipiodol was 25 months and in the lipiodol-DSM-group 28 months (p = 0.845).
Conclusion: Our data suggest a slight benefit of the use of lipiodol and DSM in comparison of using lipiodol only for chemoembolization of HCC in terms of local tumor control and survival data, this trend did not reach the level of significance.
Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2) enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other) animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.
C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement).