• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Scharner, Dörte (1)

Year of publication

  • 2009 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Keywords

  • Caspase-8 (1)
  • Endotheliale Vorläuferzellen (1)
  • Molekularbiologie (1)
  • Signaltransduktion (1)
  • Vaskulogenese (1)
  • angiogenesis (1)
  • caspase-8 (1)
  • endothial precursor cells (1)
  • vasculogenesis (1)

Institute

  • Biowissenschaften (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
The non-apoptotic function of Caspase-8 in enothelial precursor cells (2009)
Scharner, Dörte
Vasculogenesis as well as angiogenesis are important for postnatal development of blood vessels. Peripheral blood or bone marrow-derived endothelial precursor cells are used in clinical trials for therapeutic enhancement of postnatal neovascularization in patients suffering from coronary artery diseases. The vasculogenic potential of the precursor cell population depends on the appropriate retention of the infused cells to the ischemic tissue. However, cell-autonomous mechanisms regulating the attraction and retention of circulating cells in inflammatory tissue are not well understood. Caspases belong to a family of pro-apoptotic enzymes. Beyond cell death signals, caspase proteases additionally regulate non-apoptotic processes like cell morphology and migration in many cell types. The isoform Caspase-8 is essential for embryonal vasculogenesis in conditional knockout mice. In this study, we identified a novel apoptosis-unrelated role of Caspase-8 in circulating and bone marrow-derived cells for vascular repair. Caspase-8-specific inhibition abrogated the ex vivo formation of EPC from human peripheral blood. Moreover, Caspase-8 inhibition disables EPC migration and adhesion to different matrices and decreases the cell surface expression of the fibronectin receptor subunit integrin alpha 5 and the chemokine receptor CXCR4. In vitro and in vivo studies using bone marrow mononuclear cells derived from inducible Caspase-8- deficient mice revealed an essential role of Caspase-8 for EPC formation and neovascularization enhancing capacities of progenitor cells. Caspase-8 activity appears to be required for maintaining responses to matrix interaction and chemoattractants of EPC. Additional studies showed that the E3 ubiquitin ligase Cbl-b, a negative regulator of cell adhesion molecules including integrin alpha 5, is present in EPC at low protein levels under basal conditions, but markedly increases upon Caspase-8 inhibition. In vitro assays and overexpression studies in intact cells confirmed Caspase-8-dependent degradation of Cbl-b, providing a potential requirement for Caspase-8-regulated adhesion. Indeed, neovascularization of matrigel plugs was enhanced in mice lacking Cbl-b. Moreover, Cbl-b degradation in the presence of active Caspase-8 prevents the down-regulation of integrin alpha 5 and is associated with an enhanced vasculogenic activity of progenitor cells in hind limb ischemia. The identified upstream regulation of caspase-8 by cytokine IL-6 is only one possibility for fine-tuning the non-apoptotic enzymatic activity. In summary, this study shows a novel essential role of Caspase-8 for proper EPC adhesion-related signaling. Caspase-8 is involved in the function of adhesion molecules by regulation the E3 ubiquitin ligase Cbl-b. Strategies to improve survival of therapeutic injected progenitor cells by using caspase inhibitors should be addressed with caution. Because of the broad spectrum of activity of caspase-8, downstream targets of this caspase isoform and Cbl-b should be in more focus for therapeutic pretreatment to improve neovascularization of myocardial and ischemic tissue.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks