Refine
Year of publication
Document Type
- Article (334)
- Preprint (262)
- Review (3)
- Conference Proceeding (2)
- Part of Periodical (2)
Has Fulltext
- yes (603)
Is part of the Bibliography
- no (603)
Keywords
- BESIII (19)
- e +-e − Experiments (16)
- Branching fraction (12)
- Particle and Resonance Production (8)
- Quarkonium (7)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- Branching fractions (4)
- Charmonium (4)
Institute
- Physik (449)
- Frankfurt Institute for Advanced Studies (FIAS) (105)
- Medizin (17)
- Geowissenschaften (7)
- Biowissenschaften (5)
- Institut für Ökologie, Evolution und Diversität (3)
- Senckenbergische Naturforschende Gesellschaft (3)
- Biochemie und Chemie (2)
- Biochemie, Chemie und Pharmazie (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (2)
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[sNN]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Using e+e− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at the center-of-mass energy s√=3.773~GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D0→π+π−π+π− and D0→π+π−π0π0(non-η). The fit fractions of individual components are obtained, and large interferences among the dominant components of D0→a1(1260)π, D0→π(1300)π, D0→ρ(770)ρ(770) and D0→2(ππ)S are found in both channels. With the obtained amplitude model, the CP-even fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are determined to be (75.2±1.1stat.±1.5syst.)% and (68.9±1.5stat.±2.4syst.)%, respectively. The branching fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are measured to be (0.688±0.010stat.±0.010syst.)% and (0.951±0.025stat.±0.021syst.)%, respectively. The amplitude analysis provides an important model for binning strategy in the measurements of the strong phase parameters of D0→4π when used to determine the CKM angle γ(ϕ3) via the B−→DK− decay.
Using e+e− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at the center-of-mass energy s√=3.773~GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D0→π+π−π+π− and D0→π+π−π0π0(non-η). The fit fractions of individual components are obtained, and large interferences among the dominant components of D0→a1(1260)π, D0→π(1300)π, D0→ρ(770)ρ(770) and D0→2(ππ)S are found in both channels. With the obtained amplitude model, the CP-even fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are determined to be (75.2±1.1stat.±1.5syst.)% and (68.9±1.5stat.±2.4syst.)%, respectively. The branching fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are measured to be (0.688±0.010stat.±0.010syst.)% and (0.951±0.025stat.±0.021syst.)%, respectively. The amplitude analysis provides an important model for binning strategy in the measurements of the strong phase parameters of D0→4π when used to determine the CKM angle γ(ϕ3) via the B−→DK− decay.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
By analyzing the large-angle Bhabha scattering events e+e− → (γ)e+e− and diphoton events e+e− → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
The decay 𝐽/𝜓→𝛾𝛾𝜙 is studied using a sample of 1.31×109 𝐽/𝜓 events collected with the BESIII detector. Two structures around 1475 MeV/𝑐2 and 1835 MeV/𝑐2 are observed in the 𝛾𝜙 invariant mass spectrum for the first time. With a fit on the 𝛾𝜙 invariant mass, which takes into account the interference between the two structures, and a simple analysis of the angular distribution, the structure around 1475 MeV/𝑐2 is found to favor an assignment as the 𝜂(1475) and the mass and width for the structure around 1835 MeV/𝑐2 are consistent with the 𝑋(1835). The statistical significances of the two structures are 13.5𝜎 and 6.3𝜎, respectively. The results indicate that both 𝜂(1475) and 𝑋(1835) contain a sizeable 𝑠¯𝑠 component.
Using e+e− annihilation data sets corresponding to an integrated luminosity of 4.5 fb−1, collected with the BESIII detector at center-of-mass energies between 4.600 and 4.699 GeV, we report the first measurements of the absolute branching fractions B(Λ+c→pK0L)=(1.67±0.06±0.04)%, B(Λ+c→pK0Lπ+π−)=(1.69±0.10±0.05)%, and B(Λ+c→pK0Lπ0)=(2.02±0.13±0.05)%, where the first uncertainties are statistical and the second systematic. Combining with the known branching fractions of Λ+c→pK0S, Λ+c→pK0Sπ+π−, and Λ+c→pK0Sπ0, we present the first measurements of the K0S-K0L asymmetries R(Λ+c,K0S,LX)=B(Λ+c→K0SX)−B(Λ+c→K0LX)B(Λ+c→K0SX)+B(Λ+c→K0LX) in charmed baryon decays: R(Λ+c,pK0S,L)=−0.025±0.031, R(Λ+c,pK0S,Lπ+π−)=−0.027±0.048, and R(Λ+c,pK0S,Lπ0)=−0.015±0.046. No significant asymmetries within the uncertainties are observed.