Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- BET inhibitors (1)
- KCGS (1)
- bromodomain (1)
- chemogenomic set (1)
- cytotoxicity (1)
- drug discovery (1)
- druggable genome (1)
- epigenetic (1)
- gastric cancer (1)
- kinase inhibitor (1)
Institute
The Kinase Chemogenomic Set (KCGS): An open science resource for kinase vulnerability identification
(2019)
We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an open science resource for studying kinase biology. The set only includes inhibitors that show potent kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase biochemical assays. Currently, the set contains 187 inhibitors that cover 215 human kinases. The kinase chemogenomic set (KCGS) is the most highly annotated set of selective kinase inhibitors available to researchers for use in cell-based screens.
The Kinase Chemogenomic Set (KCGS): an open science resource for kinase vulnerability identification
(2021)
We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an open science resource for studying kinase biology. The set only includes inhibitors that show potent kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase biochemical assays. Currently, the set contains 187 inhibitors that cover 215 human kinases. The kinase chemogenomic set (KCGS), current Version 1.0, is the most highly annotated set of selective kinase inhibitors available to researchers for use in cell-based screens.
Gastric cancer is one of the most common malignancies and a leading cause of cancer death worldwide. The prognosis of stomach cancer is generally poor as this cancer is not very sensitive to commonly used chemotherapies. Epigenetic modifications play a key role in gastric cancer and contribute to the development and progression of this malignancy. In order to explore new treatment options in this target area we have screened a library of epigenetic inhibitors against gastric cancer cell lines and identified inhibitors for the BET family of bromodomains as potent inhibitors of gastric cancer cell proliferations. Here we show that both the pan-BET inhibitor (+)-JQ1 as well as a newly developed specific isoxazole inhibitor, PNZ5, showed potent inhibition of gastric cancer cell growth. Intriguingly, we found differences in the antiproliferative response between gastric cancer cells tested derived from Brazilian patients as compared to those from Asian patients, the latter being largely resistant to BET inhibition. As BET inhibitors are entering clinical trials these findings provide the first starting point for future therapies targeting gastric cancer.