Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Biogeochemistry (1)
- Palaeoceanography (1)
- Palaeoclimate (1)
- Physical oceanography (1)
Institute
Sponges are one of the major components of benthic communities and are considered to be a
key role organism in marine ecosystems. In addition to their importance in terms of
biodiversity, sponges are becoming increasingly attractive to the industry, as they themselves
or associated symbionts, produce various kinds of secondary metabolites of pharmaceutical
properties. Some of them have already been clinically applied.
The taxonomic characters of Porifera are limited to only a few morphological and
histological characters. In addition, sponges of the same species often show a wide
morphological variability, whereas the latter depends on different ecological parameters such
as water depth and current conditions. Thus, the taxonomic classification of sponges often
becomes a scientific challenge.
The fauna of the Yellow Sea rates among the least studied worldwide. At the same time,
according to the UN Atlas of the Ocean, the Yellow Sea is one of the most intensively
exploited marine areas in the world. This is not least due to the dense human population living
in the entire catchment area of the Yellow Sea region. In order to compile medium- and longterm
conclusions about the anthropogenic impact on biota of the Yellow Sea, the knowledge
of species and their distribution is of crucial importance, as these data form the baseline for all
future conservation efforts.
Until now the sponge fauna of the Chinese Yellow Sea is insufficiently investigated.
Thus, there is only one publication on sponges from this region that has been released
hitherto. This paper is dealing with only a view species. However, there is no reference
concerning the present location of the voucher material, on which this publication is based on.
Consequently, no scientific collection on Porifera from the Chinese part of the Yellow Sea
exists to date.
In order to compile a documentation of the recent sponge community of the Chinese
Yellow Sea, 12 study sites along the coast of the Liaoning Peninsula, China, Northeast
Yellow Sea, were investigated with focus on sponge distribution. The corresponding habitats
were characterized in regard to their topographical features, abiotic parameters, and common
composition of benthic megafaunal and macroalgal assemblages.
Due to the lack of comparable studies, a comprehensive literature research on sponges of the
shallow Northwest Pacific Ocean was required. As a result the first compilation of
publications is presented, dealing with sponges from shallow depths of the northwestern
Pacific Ocean.
Abstract
2
In the course of this study, 31 sponge species in total were recorded, which are scientifically
processed. With the exception of four all specimens were determined to species- level.
Twelve out of the total number of species are new to science and are described and classified
according to the recent taxonomic system of the phylum Porifera.
The results of this study indicate considerable differences in species composition between
investigated sites. It is shown that physical factors (particularly current regime, sedimentation,
seasonally related variations in temperatures), as well the availability of suitable substrates are
directly related to the diversity and abundance of investigated sponge communities. In this
context possible adaptation strategies of the corresponding sponges were discussed in detail.
Two sponge species, Clathria (Clathria) asodes and Antho (Acarnia) lithophoenix, formerly
known exclusively from the northeastern Pacific Ocean, are now recorded from the Northwest
Pacific Ocean for the first time. Furthermore, Penares hongdoensis, Clathria (Clathria)
hongdoensis and Celtodoryx girardae were synonymized with Penares cortius, Clathria
(Clathria) acanthostyli, and Celtodoryx ciocalyptoides respectively. Moreover, the occurrence
of eight sponge species, which were known from previous records from the Yellow Sea, could
be confirmed.
As a result of this study the Asian origin of a sponge species that is invasive to the French and
Dutch coasts of the Northeast Atlantic Ocean since the 1990s could be established. Moreover,
it is demonstrated that Celtodoryx girardae from the northeastern Atlantic is in fact
conspecific with Cornulum ciocalyptoides described by Burton (1935) from the Posiet Bay,
Sea of Japan. Apart from taxonomic remarks, variations between populations from both
oceans are examined and discussed thoroughly in regard to possible ecological implications.
The community of documented sponges shows overlapping with the one from the Sea of
Japan. According to the results it is assumed that the endemic degree of the sponges from the
Chinese Yellow Sea is rather low to moderate.
The material obtained in the course of this study was integrated in the collection of the
Senckenbergischen Naturforschenden Sammlungen. Therefore, it is the first scientific
collection of sponges from the Chinese Yellow Sea that can be consulted as a basis for all
further studies on sponges of this region.
The present study is the only investigation of sponges from Dalian and adjacent waters before
the spill occurred in the Dalian harbour in July 2010. Therefore, it provides an essential
baseline needed to assess the impact of the oil spill on benthic communities.
Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.