Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Autophagy (1)
- Chaperone (1)
- Cytoskeleton (1)
- Hippo signaling (1)
- LC3B (1)
- NDR1 (1)
- Proteostasis (1)
- apoptosis (1)
- astrocytoma (1)
- autophagy (1)
Institute
Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.
Tectonin β-propeller containing protein 2 (TECPR2) was first identified in a mass- spectrometric approach as an interactor of GABARAP, an ATG8-family protein playing a role in autophagy. The mammalian ATG8 protein family consists of seven members, namely MAP1LC3A (LC3A), MAP1LC3B (LC3B), MAP1LC3C (LC3C), GABARAP, GABARAPL1 and GABARAPL2. All share an ubiquitin-like core and possess two additional N-terminal α-helices, which are important for the distinct functions of the proteins. First determined in various organelles the ATG8 proteins are shown to be involved in autophagy, supporting the formation and cargo recruitment of autophagosomes, the vesicles transporting cargo for autophagic degradation.
Autophagy is the process of recycling cytoplasmic contents by degradation of misfolded proteins or damaged organelles in order to supply nutrients. Also clearance of pathogens can be achieved via autophagy. Importantly, LC3B is incorporated into the autophagosomal membrane and is therefore used as the main marker for autophagosomes. Previous studies exhibited that depletion of TECPR2 leads to a loss of LC3B-positive structures in cells, which suggests TECPR2 to positively regulate autophagic processes.
A frame shift deletion in the gene encoding for TECPR2 causes the generation of a premature stop codon and subsequent an unstable version of the protein, which is then degraded. Mutation in the TECPR2 gene triggers a neurodegenerative disorder termed hereditary spastic paraparesis (HSP). HSPs are a diverse group of neurodegenerative diseases that are characterized by spasticity in prevalent lower extremities and were mediated by a loss of axonal integrity of the corticospinal motor neurons. In the context of HSP more than 50 gene loci were identified by now. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy causing a form of HSP, the exact function of TECPR2 is unknown.
This study primarily focused on the determination of TECPR2’s binding mode to ATG8 proteins in vitro and in cells. The association of TECPR2 to all ATG8-family proteins was confirmed in in vitro pulldown experiments. Following fragment-based binding and peptide array experiments, the LC3-interacting region (LIR) of TECPR2 could be verified with mutants of TECPR2 lacking the LIR motif. Nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) were conducted to gain deeper insights into the binding preference to the different ATG8-family members. Moreover, the crystal structure of TECPR2-LIR was solved. In cells colocalization studies with overexpressed ATG8 proteins unraveled a preferential binding to the LC3-subfamily.
Further, mass spectrometric analysis revealed novel association partners of TECPR2: SEC24D, HOPS and BLOC-1, all of those participating in different endomembrane trafficking pathways. Interaction and colocalization of TECPR2 with these components was validated with several immunoprecipitation experiments and the N-terminal part of the protein comprising the WD40-domain could be defined as the binding site for all three of the association partners. In further approaches, the requirement of the LIR-motif and the necessity of the availability of LC3 protein for the particular interactions were determined. Interestingly, in the absence of LC3C the binding of TECPR2 to SEC24D was completely disrupted whereas a loss of LC3B only resulted in a decreased association. Notably, the binding proteins were not subjected to autophagosomal degradation, indicating that TECPR2 may operate as a multifunctional scaffold protein. While depletion of TECPR2 destabilized HOPS and BLOC-1, the autophagy defect observed in TECRP2-deficient cells could not be attributed to functional impairment of these two complexes.
Moreover, loss of TECPR2 led to a decline in protein levels of SEC24D and of its heterodimer partner SEC23A. Thus, TECPR2 is required to regulate the protein levels of SEC23A and SEC24D and subsequently the formation of the heterodimers. Together, SEC24D and SEC23A form the inner coat of COPII vesicles. These vesicles are responsible for the anterograde transport of cargo from the ER toward the Golgi compartment. COPII-coated vesicles are secreted form ER at distinct sites, termed ER exit sites (ERES). The small GTPase SAR1A maintains the vesicle budding, coating and secretion at the ERES. Together with SEC13, SEC31 forms the outer coat of the COPII vesicles and therefore serves as a general ERES marker.
Consistent with a defect in COPII coat assembly, the number of ERES diminished in the absence of TECPR2. These phenotypes could be rescued by the wildtype TECPR2 protein but not by the LIR-mutant. Intriguingly, these results were mimicked by depletion of LC3C, which localized to ERES. By monitoring the release of various cargos from ER in dependency of TECPR2 or LC3C, a role of both proteins in ER export was determined. These facts indicated that TECPR2 cooperates with LC3C to facilitate COPII assembly, ERES maintenance and ER export. Notably, fibroblast derived from a HSP patient carrying mutated TECPR2 showed diminished SEC24D protein levels and delayed ER export.
Concurrent with emerging evidence for a role of ERES in autophagosome formation, depletion of TECPR2 or LC3C or overexpression of a constitutive inactive SAR1 mutant reduced puncta formation of the early autophagosomal protein WIPI2.
In summary, this study uncovered a role for TECPR2 in ER export at ERES through interaction and stabilization of SEC24D, a COPII coat protein. This process also depended on ATG8-family protein LC3C, which is localized at ERES. Both proteins are required for correct COPII-mediated secretion. Moreover, the presence of TECPR2 and LC3C on ER allows development of omegasomes, membranous structures budding ER to form autophagosomes, by stabilization of WIPI2 and therefore contribute to autophagosome formation.
Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.