• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Nikles, Daphne (2)
  • Tampé, Robert (1)

Year of publication

  • 2005 (1)
  • 2009 (1)

Document Type

  • Article (1)
  • Doctoral Thesis (1)

Language

  • German (1)
  • English (1)

Has Fulltext

  • yes (2)

Is part of the Bibliography

  • no (2)

Keywords

  • Impfung (1)
  • Maus-Leukämie-Virus (1)
  • Prion (1)
  • Prionprotein (1)
  • Retrovirus (1)
  • Virus-ähnliche Partikel (1)
  • prion (1)
  • prion protein (1)
  • retrovirus (1)
  • vaccination (1)
+ more

Institute

  • Biochemie und Chemie (2)

2 search hits

  • 1 to 2
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Stirb an einem anderen Tag : Virus versus Immunsystem (2009)
Nikles, Daphne ; Tampé, Robert
Jeder Mensch kämpft täglich erfolgreich mit Krankheitserregern, ohne dass er sich der komplexen molekularen Vorgänge dabei bewusst wäre. Wie in einem Hollywood-Streifen geht es rasant zur Sache. Ist das Immunsystem angeschlagen oder trifft es auf starke Gegner, kann eine Infektion binnen weniger Tage außer Kontrolle geraten und lebensbedrohliche Reaktionen hervorrufen. Der menschliche Organismus benötigt eine effiziente Verteidigungsstrategie gegen die Eindringlinge und muss, ebenso wie der britische Geheimdienst im Bond-Film, in die Ausbildung geübter Agenten investieren, Agenten mit Doppel-Null-Status. Agenten wie James Bond.
Displaying the prion protein on virus-like particles : a novel tool towards vaccination (2005)
Nikles, Daphne
Prion diseases, also called transmissible spongiform encephalopathies, are a group of fatal neurodegenerative conditions that affect humans and a wide variety of animals. To date there is no therapeutic or prophylactic approach against prion diseases available. The causative infectious agent is the prion, also termed PrPSc, which is a pathological conformer of a cellular protein named prion protein PrPc. Prions are thought to multiply upon conversion of PrPc to PrPSc in a self-propagating manner. Immunotherapeutic strategies directed against PrPc represent a possible approach in preventing or curing prion diseases. Accordingly, it was already shown in animal models, that passive immunization delays the onset of prion diseases. The present thesis aimed at the development of a candidate vaccine towards the active immunization against prion diseases, an immune response, which has to be accompanied by the circumvention of host tolerance to the self-antigen PrPc. The vaccine development was approached using virus-like particles (retroparticles) derived from either the murine leukemia (MLV) or the human immunodeficiency virus (HIV). The display of PrP on the surface of such particles was addressed for both the cellular and the pathogenic form of PrP. The display of PrPc was achieved by either fusion to the transmembrane domain of the platelet derived growth factor receptor (PDGFR) or to the N-terminal part of the viral envelope protein (Env). In both cases, the corresponding PrPD- and PrPE-retroparticles were successfully produced and analyzed via immune fluorescence, Western Blot analysis, immunogold electron microscopy as well as by ELISA methods. Both, PrPD- and PrPE-retroparticles showed effective incorporation of N-terminally truncated forms of PrPc but not for the complete protein. PrPc at this revealed the typical glycosylation pattern, which was specifically removed by a glycosidase enzyme. Upon display of PrPc on retroparticles the protein remained detectable by PrP-specific antibodies under native conditions. Electron microscopy analysis of PrPc-variants revealed no alteration of the characteristic retroviral morphology of the generated particles. MLV-derived PrPD-retroparticles were successfully used in immunization studies. Contrary to approaches using bacterially expressed PrPc, the immunization of mice resulted in a specific antibody response. The display of the pathogenic isoform was aimed by two different strategies. The first one was directed at the conversion of the proteinase K (PK) sensitive from of PrP on the surface of PrPD-retroparticles into the PK resistant form. Albeit specific adaption of the PK digestion assay detecting resistant PrP, no PrP conversion was observed for PrPD-retroparticles. The second approach utilized a replication competent variant of the ecotropic MLV displaying PrPc on the viral Env protein. This MLV variant was stable in cell culture for six passages but did not replicate on scrapie-infected, PrPSc-propagating neuroblastoma cells. Thus, besides PrPc-displaying virus-like particles a replication competent MLV variant was obtained, which stably incorporated PrPc at the N-terminus of the viral Env protein. The incorporation of the cell-surface located PrPc into particles was expected from previously obtained data on protein display in the context of retrovirus-derived particles. Thus, the lack of incorporation observed for the complete PrPc sequence was rather unexpected and was found to be inhibited at both, fusion to PDGFR and the viral Env. In contrast to N-terminally truncated PrPc, the complete PrPc was shown to exhibit increased cell surface internalization rates and half-life times eventually contributing to the observed results. The PrP-vaccination approach described in this work represents the first successful system inducing PrP-specific antibody responses against the prion protein in wt mice. Explanations at this are based on the induction of specific T cell help or effects of the innate immunity, respectively. MLV-and HIV-derived particles bearing the PrP-coding sequence or being replication competent variants generated during this thesis might help to further improve the PrP-specific immune response.
  • 1 to 2

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks