Refine
Year of publication
Language
- English (91)
Has Fulltext
- yes (91)
Is part of the Bibliography
- no (91)
Keywords
- Diffraction (2)
- Elastic scattering (2)
- Heavy ion collisions (2)
- Polarization (2)
- Azimuthal correlations (1)
- COVID-19 (1)
- Canonical suppression (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Collectivity (1)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive 𝜋0 at center-of-mass energies (√𝑠) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-𝑥, and, when compared to previous measurements, no dependence on √𝑠 from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. 𝜋0 with no nearby particles tend to have a higher TSSA than inclusive 𝜋0. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive 𝜋0 asymmetry as a function of Feynman-𝑥. To investigate final-state effects, the Collins asymmetry of 𝜋0 inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the 𝜋0 momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the 𝜋0. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.
Measurement of inclusive charged-particle jet production in Au+Au collisions at √sNN = 200 GeV
(2021)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at sNN−−−−√=200 GeV. Jets are reconstructed with the anti-kT algorithm using charged tracks with pseudorapidity |η|<1.0 and transverse momentum 0.2<pchT,jet<30 GeV/c, with jet resolution parameter R=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-pT) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the pT region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<pchT,jet<25 GeV/c and 5<pchT,jet<30 GeV/c, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the pp yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high pT, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of R exhibits no significant evidence for medium-induced broadening of the transverse jet profile for R<0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Measurement of inclusive J/ψ polarization in p + p collisions at √s=200 GeV by the STAR experiment
(2020)
We report on new measurements of inclusive 𝐽/𝜓 polarization at midrapidity in 𝑝+𝑝 collisions at √𝑠=200 GeV by the STAR experiment at the Relativistic Heavy Ion Collider. The polarization parameters, 𝜆𝜃, 𝜆𝜙, and 𝜆𝜃𝜙, are measured as a function of transverse momentum (𝑝T) in both the helicity and Collins-Soper (CS) reference frames within 𝑝T<10 GeV/𝑐. Except for 𝜆𝜃 in the CS frame at the highest measured 𝑝T, all three polarization parameters are consistent with 0 in both reference frames without any strong 𝑝T dependence. Several model calculations are compared with data, and the one using the Color Glass Condensate effective field theory coupled with nonrelativistic QCD gives the best overall description of the experimental results, even though other models cannot be ruled out due to experimental uncertainties.
Measurement of inclusive charged-particle jet production in Au + Au collisions at √sNN=200 GeV
(2020)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at √𝑠𝑁𝑁=200 GeV. Jets are reconstructed with the anti-𝑘𝑇 algorithm using charged tracks with pseudorapidity |𝜂|<1.0 and transverse momentum 0.2<𝑝ch
𝑇,jet<30 GeV/𝑐, with jet resolution parameter 𝑅=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-𝑝𝑇) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the 𝑝𝑇 region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<𝑝ch
𝑇,jet<25 GeV/𝑐 and 5<𝑝ch
𝑇,jet<30 GeV/𝑐, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the 𝑝𝑝 yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high 𝑝𝑇 and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of 𝑅 exhibits no significant evidence for medium-induced broadening of the transverse jet profile for 𝑅 <0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Investigation of the linear and mode-coupled flow harmonics in Au+Au collisions at √sNN = 200 GeV
(2020)
Flow harmonics (vn) of the Fourier expansion for the azimuthal distributions of hadrons are commonly employed to quantify the azimuthal anisotropy of particle production relative to the collision symmetry planes. While lower order Fourier coefficients (v2 and v3) are more directly related to the corresponding eccentricities of the initial state, the higher-order flow harmonics (vn>3) can be induced by a modecoupled response to the lower-order anisotropies, in addition to a linear response to the same-order anisotropies. These higher-order flow harmonics and their linear and mode-coupled contributions can be used to more precisely constrain the initial conditions and the transport properties of the medium in theoretical models. The multiparticle azimuthal cumulant method is used to measure the linear and mode-coupled contributions in the higher-order anisotropic flow, the mode-coupled response coefficients, and the correlations of the event plane angles for charged particles as functions of centrality and transverse momentum in Au+Au collisions at nucleon-nucleon center-of-mass energy √sN N= 200 GeV. The results are compared to similar LHC measurements as well as to several viscous hydrodynamic calculations with varying initial conditions.
We present a measurement of inclusive J /ψ production at mid-rapidity (|y| < 1) in p+p collisions at a center-of-mass energy of √s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for J /ψ as a function of transverse momentum (p T ) for 0 < p T < 14 GeV/c and the total cross section are reported and compared to calculations from the color evaporation model and the non-relativistic Quantum Chromodynamics model. The dependence of J /ψ relative yields in three p T intervals on charged-particle multiplicity at mid-rapidity is measured for the first time in p+p collisions at √s = 200 GeV and compared with that measured at √s = 7 TeV, PYTHIA8 and EPOS3 Monte Carlo generators, and the Percolation model prediction.
We present the first measurement of the proton–Ω correlation function in heavy-ion collisions for the central (0–40%) and peripheral (40–80%) Au + Au collisions at √sNN = 200 GeV by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Predictions for the ratio of peripheral collisions to central collisions for the proton–Ω correlation function are sensitive to the presence of a nucleon– bound state. These predictions are based on the proton– interaction extracted from (2 + 1)-flavor lattice QCD calculations at the physical point. The measured ratio of the proton–Ω correlation function between the peripheral (small system) and central (large system) collisions is less than unity for relative momentum smaller than 40 MeV/c. Comparison of our measured correlation ratio with theoretical calculation slightly favors a proton– bound system with a binding energy of ∼ 27 MeV.