### Refine

#### Year of publication

#### Document Type

- Working Paper (59)
- Conference Proceeding (2)
- Article (1)
- Diploma Thesis (1)
- Report (1)

#### Has Fulltext

- yes (64)

#### Is part of the Bibliography

- no (64)

#### Keywords

- Lambda-Kalkül (14)
- Formale Semantik (10)
- lambda calculus (7)
- Nebenläufigkeit (6)
- Operationale Semantik (6)
- functional programming (6)
- Programmiersprache (5)
- concurrency (5)
- pi-calculus (5)
- semantics (5)

#### Institute

- Informatik (64)

In this paper we demonstrate how to relate the semantics given by the nondeterministic call-by-need calculus FUNDIO [SS03] to Haskell. After introducing new correct program transformations for FUNDIO, we translate the core language used in the Glasgow Haskell Compiler into the FUNDIO language, where the IO construct of FUNDIO corresponds to direct-call IO-actions in Haskell. We sketch the investigations of [Sab03b] where a lot of program transformations performed by the compiler have been shown to be correct w.r.t. the FUNDIO semantics. This enabled us to achieve a FUNDIO-compatible Haskell-compiler, by turning o not yet investigated transformations and the small set of incompatible transformations. With this compiler, Haskell programs which use the extension unsafePerformIO in arbitrary contexts, can be compiled in a "safe" manner.

We show how Sestoft’s abstract machine for lazy evaluation of purely functional programs can be extended to evaluate expressions of the calculus CHF – a process calculus that models Concurrent Haskell extended by imperative and implicit futures. The abstract machine is modularly constructed by first adding monadic IO-actions to the machine and then in a second step we add concurrency. Our main result is that the abstract machine coincides with the original operational semantics of CHF, w.r.t. may- and should-convergence.

Our recently developed LRSX Tool implements a technique to automatically prove the correctness of program transformations in higher-order program calculi which may permit recursive let-bindings as they occur in functional programming languages. A program transformation is correct if it preserves the observational semantics of programs- In our tool the so-called diagram method is automated by combining unification, matching, and reasoning on alpha-renamings on the higher-order metalanguage, and automating induction proofs via an encoding into termination problems of term rewrite systems. We explain the techniques, we illustrate the usage of the tool, and we report on experiments.

We present techniques to prove termination of cycle rewriting, that is, string rewriting on cycles, which are strings in which the start and end are connected. Our main technique is to transform cycle rewriting into string rewriting and then apply state of the art techniques to prove termination of the string rewrite system. We present three such transformations, and prove for all of them that they are sound and complete. In this way not only termination of string rewriting of the transformed system implies termination of the original cycle rewrite system, a similar conclusion can be drawn for non-termination. Apart from this transformational approach, we present a uniform framework of matrix interpretations, covering most of the earlier approaches to automatically proving termination of cycle rewriting. All our techniques serve both for proving termination and relative termination. We present several experiments showing the power of our techniques.

Motivated by tools for automaed deduction on functional programming languages and programs, we propose a formalism to symbolically represent $\alpha$-renamings for meta-expressions. The formalism is an extension of usual higher-order meta-syntax which allows to $\alpha$-rename all valid ground instances of a meta-expression to fulfill the distinct variable convention. The renaming mechanism may be helpful for several reasoning tasks in deduction systems. We present our approach for a meta-language which uses higher-order abstract syntax and a meta-notation for recursive let-bindings, contexts, and environments. It is used in the LRSX Tool -- a tool to reason on the correctness of program transformations in higher-order program calculi with respect to their operational semantics. Besides introducing a formalism to represent symbolic $\alpha$-renamings, we present and analyze algorithms for simplification of $\alpha$-renamings, matching, rewriting, and checking $\alpha$-equivalence of symbolically $\alpha$-renamed meta-expressions.

We introduce rewriting of meta-expressions which stem from a meta-language that uses higher-order abstract syntax augmented by meta-notation for recursive let, contexts, sets of bindings, and chain variables. Additionally, three kinds of constraints can be added to meta-expressions to express usual constraints on evaluation rules and program transformations. Rewriting of meta-expressions is required for automated reasoning on programs and their properties. A concrete application is a procedure to automatically prove correctness of program transformations in higher-order program calculi which may permit recursive let-bindings as they occur in functional programming languages. Rewriting on meta-expressions can be performed by solving the so-called letrec matching problem which we introduce. We provide a matching algorithm to solve it. We show that the letrec matching problem is NP-complete, that our matching algorithm is sound and complete, and that it runs in non-deterministic polynomial time.

We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb that is locally bottom-avoiding. We use a small-step operational semantics in form of a single-step rewriting system that defines a (nondeterministic) normal order reduction. This strategy can be made fair by adding resources for bookkeeping. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into any program context their termination behaviour is the same, where we use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We show that we can drop the fairness condition for equational reasoning, since the valid equations w.r.t. normal order reduction are the same as for fair normal order reduction. We evolve different proof tools for proving correctness of program transformations, in particular, a context lemma for may- as well as mustconvergence is proved, which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations preserve contextual equivalence.We also prove a standardisation theorem for fair normal order reduction. The structure of the ordering <=c a is also analysed: Ω is not a least element, and <=c already implies contextual equivalence w.r.t. may-convergence.

Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence. This also shows correctness wrt. program semantics, since the encodings are adequate translations wrt. contextual semantics. While these translations encode blocking into queuing and waiting, we also provide an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

This paper proves several generic variants of context lemmas and thus contributes to improving the tools for observational semantics of deterministic and non-deterministic higher-order calculi that use a small-step reduction semantics. The generic (sharing) context lemmas are provided for may- as well as two variants of must-convergence, which hold in a broad class of extended process- and extended lambda calculi, if the calculi satisfy certain natural conditions. As a guide-line, the proofs of the context lemmas are valid in call-by-need calculi, in callby-value calculi if substitution is restricted to variable-by-variable and in process calculi like variants of the π-calculus. For calculi employing beta-reduction using a call-by-name or call-by-value strategy or similar reduction rules, some iu-variants of ciu-theorems are obtained from our context lemmas. Our results reestablish several context lemmas already proved in the literature, and also provide some new context lemmas as well as some new variants of the ciu-theorem. To make the results widely applicable, we use a higher-order abstract syntax that allows untyped calculi as well as certain simple typing schemes. The approach may lead to a unifying view of higher-order calculi, reduction, and observational equality.