### Refine

#### Document Type

- Article (4)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

- extended Einstein gravity (2)
- gauge theory (2)
- gravitation (2)
- torsion (2)
- Friedman equation (1)
- Palatini (1)
- canonical transformation (1)
- cosmological constant (1)
- dark energy (1)
- emerging mass parameter (1)

#### Institute

Constraints on the Covariant Canonical Gauge Gravity (CCGG) theory from low-redshift cosmology are studied. The formulation extends Einstein’s theory of General Relativity (GR) by a quadratic Riemann–Cartan term in the Lagrangian, controlled by a “deformation” parameter. In the Friedman universe this leads to an additional geometrical stress energy and promotes, due to the necessary presence of torsion, the cosmological constant to a time-dependent function. The MCMC analysis of the combined data sets of Type Ia Supernovae, Cosmic Chronometers and Baryon Acoustic Oscillations yields a fit that is well comparable with the ΛCDM results. The modifications implied in the CCGG approach turn out to be subdominant in the low-redshift cosmology. However, a non-zero spatial curvature and deformation parameter are shown to be consistent with observations.

We discuss the possibility that nuclei with very large baryon numbers can exist in the form of large quark blobs in their ground states. A calculation based on the picture of quark bags shows that, in principle, the appearance of such exotic nuclear states in present laboratory experiments cannot be excluded. Some speculations in connection with the recently observed anomalous positron production in heavy-ion experiments are presented.

We derive the interaction of fermions with a dynamical space–time based on the postulate that the description of physics should be independent of the reference frame, which means to require the form-invariance of the fermion action under diffeomorphisms. The derivation is worked out in the Hamiltonian formalism as a canonical transformation along the line of non-Abelian gauge theories. This yields a closed set of field equations for fermions, unambiguously fixing their coupling to dynamical space–time. We encounter, in addition to the well-known minimal coupling, anomalous couplings to curvature and torsion. In torsion-free geometries that anomalous interaction reduces to a Pauli-type coupling with the curvature scalar via a spontaneously emerged new coupling constant with the dimension of mass. A consistent model Hamiltonian for the free gravitational field and the impact of its functional form on the structure of the dynamical geometry space–time is discussed.

The cosmological implications of the Covariant Canonical Gauge Theory of Gravity (CCGG) are investigated. CCGG is a Palatini theory derived from first principles using the canonical transformation formalism in the covariant Hamiltonian formulation. The Einstein-Hilbert theory is thereby extended by a quadratic Riemann-Cartan term in the Lagrangian. Moreover, the requirement of covariant conservation of the stress-energy tensor leads to necessary presence of torsion. In the Friedman universe that promotes the cosmological constant to a time-dependent function, and gives rise to a geometrical correction with the EOS of dark radiation. The resulting cosmology, compatible with the ΛCDM parameter set, encompasses bounce and bang scenarios with graceful exits into the late dark energy era. Testing those scenarios against low-z observations shows that CCGG is a viable theory.