Refine
Document Type
- Article (2)
- Conference Proceeding (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- equation of state (1)
- heavy-ion (1)
- hypernuclear (1)
- hyperons (1)
- multi-messenger (1)
- neutron stars (1)
- nuclear (1)
- symmetry energy (1)
Institute
Imposing multi-physics constraints at different densities on the neutron Star Equation of State
(2022)
Neutron star matter spans a wide range of densities, from that of nuclei at the surface to exceeding several times normal nuclear matter density in the core. While terrestrial experiments, such as nuclear or heavy-ion collision experiments, provide clues about the behaviour of dense nuclear matter, one must resort to theoretical models of neutron star matter to extrapolate to higher density and finite neutron/proton asymmetry relevant for neutron stars. In this work, we explore the parameter space within the framework of the Relativistic Mean Field model allowed by present uncertainties compatible with state-of-the-art experimental data. We apply a cut-off filter scheme to constrain the parameter space using multi-physics constraints at different density regimes: chiral effective field theory, nuclear and heavy-ion collision data as well as multi-messenger astrophysical observations of neutron stars. Using the results of the study, we investigate possible correlations between nuclear and astrophysical observables.
We study the implications on compact star properties of a soft nuclear equation of state determined from kaon production at subthreshold energies in heavy-ion collisions. On one hand, we apply these results to study radii and moments of inertia of light neutron stars. Heavy-ion data provides constraints on nuclear matter at densities relevant for those stars and, in particular, to the density dependence of the symmetry energy of nuclear matter. On the other hand, we derive a limit for the highest allowed neutron star mass of three solar masses. For that purpouse, we use the information on the nucleon potential obtained from the analysis of the heavy-ion data combined with causality on the nuclear equation of state.
The appearance of strangeness in the form of hyperons within the inner core of neutron stars is expected to affect its detectable properties, such as its global structure or gravitational wave emission. This work explores the parameter space of hyperonic stars within the framework of the Relativistic Mean Field model allowed by the present uncertainties in the state-of-the-art nuclear and hypernuclear experimental data. We impose multi-physics constraints at different density regimes to restrict the parameter space: Chiral effective field theory, heavy-ion collision data, and multi-messenger astrophysical observations of neutron stars. We investigate possible correlations between empirical nuclear and hypernuclear parameters, particularly the symmetry energy and its slope, with observable properties of neutron stars. We do not find a correlation for the hyperon parameters and the astrophysical data. However, the inclusion of hyperons generates a tension between the astrophysical and heavy-ion data constraining considerably the available parameter space.