Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- 16p11.2 (1)
- ADHD (1)
- Aggression (1)
- Autism (1)
- Autism Spectrum Disorder (1)
- Autismus-Spektrum-Störungen (1)
- CNV (1)
- CNV 16p11.2 (1)
- CRISPR/Cas9 (1)
- DNA methylation (1)
Institute
Bei Autismus-Spektrum-Störungen (ASS) handelt es sich um genetisch komplexe Störungen mit hoher Erblichkeit. Als zugrundeliegender Pathomechanismus von ASS werden unter anderem Veränderungen der neuronalen Entwicklung diskutiert. Der Phänotyp von ASS ist definiert durch Einschränkungen in der sozialen Interaktion und Kommunikation sowie repetitives und stereotypes Verhalten. Genkopiepolymorphismen (englisch „copy number variations“/CNVs), also Deletionen oder Duplikationen einer chromosomalen Region, wurden wiederholt in Probanden mit ASS identifiziert. Hierbei ist in ASS die Region 16p11.2 mit am häufigsten von CNVs betroffen. Einige Gene aus diesem chromosomalen Abschnitt wurden bereits funktionell charakterisiert. Dennoch können die Befunde der bisherigen Einzelgenstudien nicht alle Aspekte erklären, die durch 16p11.2 CNVs hervorgerufen werden. Ziel dieser Studie war es daher, ein weiteres neuronal assoziiertes Kandidatengen dieser Region zu identifizieren und im Anschluss funktionell im Kontext der neuronalen Differenzierung zu charakterisieren.
Das SH-SY5Y Neuroblastom-Zellmodell wurde auf Transkriptom- und morphologischer Ebene auf seine Eignung als Modell für neuronale Differenzierung untersucht und bestätigt. Eine Analyse der Expressionen aller Gene der 16p11.2-Region zeigte, dass das Gen Quinolinat-Phosphoribosyltransferase (QPRT) eine vergleichsweise hohe Expression mit der stärksten und robustesten Regulierung über die Zeit aufwies. Eine de novo Deletion der 16p11.2-Region wurde in einem Patienten im Vergleich zu seinen Eltern validiert. In Patienten-spezifischen lymphoblastoiden Zelllinien derselben Familie konnten wir eine Gendosis-abhängige Expression von QPRT auf RNA-Ebene bestätigen. In SH-SY5Y-Zellen korrelierte die Expression von QPRT signifikant mit der Entwicklung von Neuriten während der Differenzierung. Um QPRT funktionell zu charakterisieren, benutzten wir drei verschiedene Methoden zur Reduktion der QPRT-Gendosis: (i) knock down (KD) durch siRNA, (ii) chemische Inhibition durch Phthalsäure und (iii) knock out (KO) über CRISPR/Cas9-Geneditierung. Eine Reduktion von QPRT durch siRNA führte zu einer schwachen Veränderung der neuronalen Morphologie differenzierter SH-SY5Y-Zellen. Die chemische Inhibition sowie der genetische KO von QPRT waren letal für differenzierende aber nicht für proliferierende Zellen. Eine Metabolitenanalyse zeigte keine Veränderungen des QPRT-assoziierten Tryptophanstoffwechsels. Gene, welche auf Transkriptomebene im Vergleich zwischen KO- und Kontrollzellen differenziell reguliert vorlagen, waren häufig an Prozessen der neuronalen Entwicklung sowie an der Bildung, Stabilität und Funktion synaptischer Strukturen beteiligt. Die Liste differenziell regulierter Gene enthielt außerdem überdurchschnittlich viele ASS-Risikogene und ko-regulierte Gengruppen waren assoziiert mit der Entwicklung des dorsolateralen präfrontalen Cortex, des Hippocampus sowie der Amygdala.
In dieser Studie zeigten wir einen kausalen Zusammenhang zwischen QPRT und der neuronalen Differenzierung in vitro sowie einen Einfluss von QPRT auf die Regulation von ASS-assoziierten Genen und Gen-Netzwerken. Funktionell standen diese Gene im Kontext mit synaptischen Vorgängen, welche durch Veränderungen zu einem Exzitations-Inhibitions-Ungleichgewicht und letztendlich zum Zelltod von Neuronen führen können. Unsere Ergebnisse heben in Summe die wichtige Rolle von QPRT in der Krankheitsentstehung von ASS, insbesondere in Trägern einer 16p11.2 Deletion, hervor.
The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics.
Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome.
Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain.
Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala.
Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
Autism spectrum disorders (ASD) are highly heritable and are characterized by deficits in social communication and restricted and repetitive behaviors. Twin studies on phenotypic subdomains suggest a differing underlying genetic etiology. Studying genetic variation explaining phenotypic variance will help to identify specific underlying pathomechanisms. We investigated the effect of common variation on ASD subdomains in two cohorts including >2500 individuals. Based on the Autism Diagnostic Interview-Revised (ADI-R), we identified and confirmed six subdomains with a SNP-based genetic heritability h2SNP = 0.2–0.4. The subdomains nonverbal communication (NVC), social interaction (SI), and peer interaction (PI) shared genetic risk factors, while the subdomains of repetitive sensory-motor behavior (RB) and restricted interests (RI) were genetically independent of each other. The polygenic risk score (PRS) for ASD as categorical diagnosis explained 2.3–3.3% of the variance of SI, joint attention (JA), and PI, 4.5% for RI, 1.2% of RB, but only 0.7% of NVC. We report eight genome-wide significant hits—partially replicating previous findings—and 292 known and novel candidate genes. The underlying biological mechanisms were related to neuronal transmission and development. At the SNP and gene level, all subdomains showed overlap, with the exception of RB. However, no overlap was observed at the functional level. In summary, the ADI-R algorithm-derived subdomains related to social communication show a shared genetic etiology in contrast to restricted and repetitive behaviors. The ASD-specific PRS overlapped only partially, suggesting an additional role of specific common variation in shaping the phenotypic expression of ASD subdomains.
Protein signatures of oxidative stress response in a patient specific cell line model for autism
(2014)
Background: Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress.
Methods: Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways.
Results: The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects' and the ASD patients' set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress.
Conclusions: Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.
Die Ätiologie der Autismus-Spektrum-Störungen (ASS) ist in genetischen Risikofaktoren sowie der Interaktion von genetischen und biologisch wirksamen Umweltrisikofaktoren begründet. ASS werden aufgrund von Verhaltensmerkmalen, nämlich bleibend eingeschränkter sozialer Kommunikation, sowie durch stereotypes Verhalten, sensorische und Sonderinteressen diagnostiziert. Hinsichtlich des genetischen Hintergrundes besteht eine hohe genetische Heterogenität, d. h., die genetischen Ursachen sind vielfältig und individuell oft sehr unterschiedlich ausgeprägt. Allerdings konvergieren diese Ursachen in bestimmten biologischen Mechanismen und überlappenden biologischen Endstrecken, deren Veränderung sehr wahrscheinlich den autismusspezifischen Verhaltensmerkmalen zugrunde liegt. Die vorliegende, selektive Literaturübersicht summiert die genetischen Befunde und fokusiert sich insbesondere auf Mechanismen und Endstrecken, die aufgrund der neueren Forschung immer besser charakterisiert werden. Der Artikel schließt mit Hinweisen zur klinischen Relevanz der aktuellen Befunde sowie offenen Fragen der translationalen Forschung.
Conduct Disorder (CD) is an impairing psychiatric disorder of childhood and adolescence characterized by aggressive and dissocial behavior. Environmental factors such as maternal smoking during pregnancy, socio-economic status, trauma, or early life stress are associated with CD. Although the number of females with CD is rising in Western societies, CD is under-researched in female cohorts. We aimed at exploring the epigenetic signature of females with CD and its relation to psychosocial and environmental risk factors. We performed HpaII sensitive genome-wide methylation sequencing of 49 CD girls and 50 matched typically developing controls and linear regression models to identify differentially methylated CpG loci (tags) and regions. Significant tags and regions were mapped to the respective genes and tested for enrichment in pathways and brain developmental processes. Finally, epigenetic signatures were tested as mediators for CD-associated risk factors. We identified a 12% increased methylation 5’ of the neurite modulator SLITRK5 (FDR = 0.0046) in cases within a glucocorticoid receptor binding site. Functionally, methylation positively correlated with gene expression in lymphoblastoid cell lines. At systems-level, genes (uncorr. P < 0.01) were associated with development of neurons, neurite outgrowth or neuronal developmental processes. At gene expression level, the associated gene-networks are activated perinatally and during early childhood in neocortical regions, thalamus and striatum, and expressed in amygdala and hippocampus. Specifically, the epigenetic signatures of the gene network activated in the thalamus during early childhood correlated with the effect of parental education on CD status possibly mediating its protective effect. The differential methylation patterns identified in females with CD are likely to affect genes that are expressed in brain regions previously indicated in CD. We provide suggestive evidence that protective effects are likely mediated by epigenetic mechanisms impairing specific brain developmental networks and therefore exerting a long-term effect on neural functions in CD. Our results are exploratory and thus, further replication is needed.