Refine
Year of publication
Document Type
- Preprint (17)
- Article (4)
- Doctoral Thesis (1)
Language
- English (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- Dirac (2)
- Kerne (2)
- QCD (2)
- Quanten-Chromodynamik (2)
- Quark Gluon Plasma (2)
- baryon (2)
- heavy ion collisions (2)
- heavy-ion collisions (2)
- nuclear matter (2)
- nuclei (2)
Institute
Gegenstand dieser Arbeit sind Eigenschaften angeregter hadronischer Materie sowie physikalische Systeme, in denen diese Materie auftritt bzw. produziert wird. Die Beschreibung der stark wechselwirkenden Materie erfolgt in einem hadronischen, chiral-symmetrischen SU(3)L x SU(3)R Modell, welches die Saturierungseigenschaften von Kernmaterie und die Eigenschaften von Atomkernen reproduziert. Die Untersuchung heißer und dichter unendlicher hadronischor Materie zeigt, dass das vom Modell vorhergesagte Phasendiagramm stark von den Kopplungen der Baryonenresonanzen abhängt. Für kalte hadronische Materie ergibt die Einbeziehung des Baryonendekupletts und die Freiheit in deren Vektorkopplungen eine sehr große Bandbreite an verschiedenen Zustandsgleichungen. Für heiße hadronische Materie mit verschwindendem baryochemischen Potential zeigt sich ebenfalls eine starke Abhängigkeit der Eigenschaften hadronischer Materie von der Ankopplung der baryonischen Resonanzen. Es werden drei verschiedene Parametrisierungen betrachtet. Das resultierende Phasenübergangsverhalten variiert von einem "Crossover" über einen schwachen, zu einem doppelten Phasenübergang erster Ordnung. Es zeigt sich jedoch, dass die beobachteten Eigenschaften von Neutronensternen die Unbestimmtheit bzgl. der Vektorkopplung dieser Freiheitsgrade und damit der Zustandsgleichung deutlich verringern. Das Raum-Zeit Verhalten relativistischer Schwerionenkollisionen bei SPS- und RHIC-Energien wird mittels einer hydrodynamischen Simulation unter Benutzung der chiralen Zustandsgleichungen untersucht. Dabei spiegelt sich das unterschiedliche Phasenübergangsverhalten deutlich im Ausfrierverhalten der hadronischen Materie wider. Die im chiralen Modell berechneten Teilchenzahlverhältnisse werden mit den aus Schwerionenkollisionen von AGS- bis RHIC-Energien erhaltenen experimentellen Daten verglichen. Dabei zeigt sich, dass die verschiedenen Parametersätze des chiralen Modells und die Rechnungen für ein nichtwechselwirkendes, ideales Hadronengas eine ähnlich gute Beschreibung der gemessenen Weite liefern. Die deduzierten Ausfrierwerte für die Temperatur sind sensitiv auf das Phasenübergangsverhalten und liegen unterhalb der jeweiligen kritischen Temperatur. Die vorhergesagten Ausfriermassen sind in allen Parametrisierungen sehr ähnlich mit Abweichungen bis zu 15% von den entsprechenden Vakuumwerten. Die Untersuchung der Eigenschaften von Vektormesonen in dichter Materie erfolgt in der Mittleren-Feld- und in der HartreeNäherung. Hierbei zeigt sich eine signifikante Reduzierung der Teilchenmassen durch Vakuumpolarisationseffekte.
Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.
The yields of strange particles are calculated with the UrQMD model for p,Pb(158 AGeV)Pb collisions and compared to experimental data. The yields are enhanced in central collisions if compared to proton induced or peripheral Pb+Pb collisions. The enhancement is due to secondary interactions. Nevertheless, only a reduction of the quark masses or equivalently an increase of the string tension provides an adequate description of the large observed enhancement factors (WA97 and NA49). Furthermore, the yields of unstable strange resonances as the Lambda star(1520) resonance or the phi meson are considerably affected by hadronic rescattering of the decay products.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.
We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv
Abstract. A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L × SU(3)R -model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. Finite nuclei can be reasonably described, too. The condensates and the e ective baryon masses at finite baryon density and temperature are discussed.
We investigate the properties of di erent modifications to the linear -model (including a dilaton field associated with broken scale invariance) at finite baryon density and nonzero temperature T. The explicit breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows to lower the compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for the wide range of stability of the normal phase in the (µ, T)-plane. The abnormal solution becomes not only energet- ically preferable to the normal state at high temperature or density, but also mechanically stable due to the inclusion of dilatons. PACS number:12.39.F
A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.
The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) theta - omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent e ective hadron masses and e ective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three di erent parametrizations of the model, which show di erent types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters di er considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out di er up to 150 MeV from their vacuum values.