Refine
Year of publication
- 2015 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Biochemie und Chemie (1)
- Pharmazie (1)
Acute myeloid leukemia is a hematopoietic stem cell disorder and a type of acute leukemia which is characterized by clonal proliferation of myeloid precursors with a reduced capacity to differentiate into more mature cellular elements. Clinically AML is characterized by a high degree of heterogeneity with respect to chromosome abnormalities, gene mutations, and changes in expression of multiple genes and microRNAs. Cytogenetic abnormalities can be detected in approximately 50% to 60% of newly diagnosed AML patients. Majority of AML cases are associated with chromosomal aberrations, more specifically translocations that often result in gene arrangements and expression of aberrant fusion proteins. This study was carried out with two fusion proteins: PML/RARα and DEK/CAN which results from the translocations t(15;17) and t (6,9) respectively. PML/RARα is the most common translocation (97%) and the main driver in Acute Promyelocytic Leukemia (APL), a wellcharacterized and well treatable subtype of AML. In contrast, DEK/CAN occurs in 1-5% of AML, associated with poor prognosis and defines a high risk group in AML. The expression of PML/RARα results in a fusion protein that acts as a transcriptional repressor by interfering with gene expression programs involved in differentiation, apoptosis, and selfrenewal. Current therapy focused on the targeting of PML/RARα fusion protien. Success has been achieved by using either ATRA, anthracyclines and Arsenic trioxide or their combinations. These agents induce differentiation in PML/RARα positive AML and hence called differentiation therapy. In comparison with ATRA, ATO and anthracyclines are poor cellular differentiation agents. Despite early promise, several studies have reported that differentiation therapy is unable to target/eradicate leukemic stem cells or eradicate the disease. Therefore current therapeutic focus is to eliminate leukemic stem cells and achieve complete molecular remission not only in APL but also in acute lymphoblastic leukemia and chronic myeloid leukemia as well. Key enzymes of the eicosanoid pathways in the arachidonic acid metabolism, such as COX1/2 as well as the 5-LO have been shown to be good targets for leukemic stem cell therapy approach in AML by interfering with the Wntsignaling which is known to be indispensable for the pathogenesis of AML. Recently it was reported that the third eicosanoid pathway based on the cytochrome P450 (CYP) enzymes interferes with Wnt-signaling as well as with the proliferation and mobilization of hematopoietic stem cells...