Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- IL-27 cytokine (1)
- cancer (1)
- cytokine, angiogenesis (1)
- endothelial cell (1)
- inflammation (1)
- mammary cancer (1)
- natural killer T cells (1)
Institute
Um der Erkennung durch das körpereigene Immunsystem entkommen, weisen Tumore Modifikationen in ihrer Mikroumgebung auf. Zu diesen gehören u. a. veränderte Sauerstoffkonzentrationen im Tumorkern und die Freisetzung biochemischer Faktoren aus Tumorzellen, welche die Funktion von Tumor-assoziierten Phagozyten, wie z.B. Dendritischen Zellen (DC) beeinflussen. DC sind professionelle Antigen-präsentierende Zellen, die eine Spezialisierung in verschiedene funktionale Subtypen aufweisen. Myeloische DC (mDC) sind besonders effizient in Hinsicht auf die Präsentation von Antigenen, wohingegen plasmazytoide DC (pDC) regulatorisch auf das Immunsystem einwirken. Beide Subtypen spielen eine wichtige Rolle bei der Karzinogenese.
Während humane mDC, zur therapeutischen Verwendung, ex vivo aus Monozyten hergestellt werden können, war dies für humane pDC bisher nicht möglich. Ein war deshalb ein erstes Ziel dieser Arbeit, ein Protokoll zur Generierung humaner pDC aus humanen Monozyten zu entwickeln. Diese wurden mittels des Wachstumsfaktors Fms-related tyrosine kinase 3 ligand (Flt3-L) zu pDC-Äquivalenten differenziert, welche als monocyte-derived pDC (mo-pDC) bezeichnet wurden. In der Tat zeigten mo-pDC ein für humane pDC charakteristisches Oberflächenmarkerprofil und wiesen, im Vergleich zu mDC, eine geringe Kapazität zur Induktion der Proliferation autologer T Zellen und zur Phagozytose apoptotischer Zellen auf. Mo-pDC erwarben im Verlauf ihrer Differenzierung aus Monozyten eine kontinuierlich erhöhte Expression des pDC-spezifischen Transkriptionfaktors E2-2 und seiner spezifischen Zielgene. Der wichtigste funktionale Parameter von pDC ist die Produktion großer Mengen von Interferon-α (IFN-α). Mo-pDC sezernierten, nach vorheriger Aktivierung mit Tumornekrosefaktor-α (TNF-α) oder wenn zu ihrer Differenzierung neben Flt3-L auch Vitamin D3 oder all-trans-Retinolsäure verwendet wurde, ebenfalls große Mengen IFN-α. Wurden mo-pDC unter Hypoxie, einem prominenten Faktor der Tumormikroumgebung, generiert, so waren die Expression des spezifischen Transkriptionsfaktors E2-2 und die Freisetzung von IFN-α stark vermindert. Diese Daten zeigten zunächst, dass mo-pDC für das Studium von Differenzierung und Funktion humaner pDC eingesetzt werden können.
Weiterhin lieferten sie Hinweise auf eine veränderte Differenzierung humaner pDC unter Hypoxie. In einem nächsten Schritt wurde folglich untersucht, ob Hypoxie auch die Differenzierung von pDC aus deren physiologischen Vorläufern beeinflusst. Wurden Knochenmarkszellen der Maus mit Flt3-L unter Normoxie oder Hypoxie kultiviert, so war die Differenzierung zu pDC unter Hypoxie in der Tat unterdrückt. Dies war abhängig von der Hypoxie-induzierten Aktivität des Hypoxie-induzierten Faktors 1 (HIF-1), da die Flt3-Linduzierte Differenzierung von murinen Knochenmarkszellen, in denen die Expression von HIF-1 in pDC-Vorläuferzellen ausgeschaltet war, unter Hypoxie normal verlief.
Zusammenfassend kann also gesagt werden, dass Hypoxie, durch Aktivierung von HIF-1, Differenzierung und Funktion von pDC unterdrückt. Dieser Mechanismus könnte zu ihrer beschriebenen Dysfunktion in humanen Tumoren beitragen.
Neben Hypoxie sind viele andere Faktoren an der Immunsuppression in Tumoren beteiligt.
Eine Komponente der Mikroumgebung in Tumoren ist das Vorhandensein apoptotischer Tumorzellen. Apoptose von Tumorzellen findet, im Kontrast zur generellen Sicht von Tumoren als Apoptose-resistente Entitäten, auch in unbehandelten Tumoren im Überfluss statt. Apoptotische körpereigene Zellen unterdrücken unter physiologischen Bedingungen das Immunsystem. Deshalb könnte das Freisetzen von apoptotischem Material oder die Sekretion von Faktoren aus sterbenden Tumorzellen einen starken Einfluss auf die Funktion von Tumor-assoziierten DC und die damit verbundene Aktivierung von tumoriziden Lymphozyten haben. Eine diesbezügliche Studie war das zweite Ziel der vorliegenden Arbeit. Humane mDC wurden zu diesem Zweck mit Überständen lebender, apoptotischer oder nekrotischer humaner Brustkrebszellen aktiviert und anschließend mit autologen T Zellen ko-kultiviert. Danach wurde das zytotoxische Potential der ko-kultivierten T Zellen analysiert. Interessanterweise unterdrückte die Aktivierung mit Überständen apoptotischer Tumorzellen die DC-vermittelte Generierung tumorizider T Zellen durch die Ausprägung einer Population von regulatorischen T Zellen (Treg), die durch die gleichzeitige Expression der Oberflächenmoleküle CD39 und CD69 charakterisiert war. Die Ausprägung der CD39-und CD69-exprimierenden Treg Zell-Population war abhängig von der Freisetzung des bioaktiven Lipids Sphingosin-1-Phosphat (S1P) aus apoptotischen Zellen, welches durch den S1P-Rezeptor 4 zur Freisetzung des immunregulatorischen Zytokins IL-27 aus mDC führte.
Neutralisierung von IL-27 in AC-aktivierten Ko-Kulturen von mDC und T Zellen blockierte die Generierung von CD39- und CD69-exprimierenden Treg Zellen und resultierte folglich in der Aktivierung zytotoxischer T Zellen. Weiterhin war die Bildung von Adenosin in den Ko-Kulturen für die Unterdrückung zytotoxischer T Zellen vonnöten. Erste Experimente lieferten Hinweise auf eine direkte Interaktion von CD69- und CD39-exprimierenden Treg Zellen mit CD73-exprimierenden zytotoxischen T Zellen. CD39 und CD73 werden für die Bildung von Adenosin aus ATP benötigt, weswegen die Interaktion von Treg Zellen und zytotoxischen T Zellen die Adenosin-Produktion fördern könnte.
Zusammenfassend zeigen die hier präsentierten Befunde wie Faktoren der
Tumormikroumgebung die Funktion von humanen DC Subtypen beeinflussen können. Ein Verständnis der zugrundeliegenden Mechanismen kann wertvolle Informationen für die Wahl effektiver Immuntherapien oder Chemotherapien liefern und so die Therapie humaner Tumore unterstützen.
Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.
IL-27 regulates inflammatory diseases by exerting a pleiotropic impact on immune cells. In cancer, IL-27 restricts tumor growth by acting on tumor cells directly, while its role in the tumor microenvironment is still controversially discussed. To explore IL-27 signaling in the tumor stroma, we used a mammary carcinoma syngraft approach in IL27Rα-deficient mice. Tumor growth in animals lacking IL27Rα was markedly reduced. We noticed a decrease in immune cell infiltrates, enhanced tumor cell death, and fibroblast accumulation. However, most striking changes pertain the tumor vasculature. Tumors in IL27Rα-deficient mice were unable to form functional vessels. Blocking IL-27-STAT1 signaling in endothelial cells in vitro provoked an overshooting migration/sprouting of endothelial cells. Apparently, the lack of the IL-27 receptor caused endothelial cell hyper-activation via STAT1 that limited vessel maturation. Our data reveal a so far unappreciated role of IL-27 in endothelial cells with importance in pathological vessel formation.