Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Aculeatoxins (1)
- Apamin (1)
- Bee toxins (1)
- Genomics (1)
- Hymenoptera venom (1)
- Machine learning (1)
- Melittin (1)
- Proteo-transcriptomics (1)
- Solitary bee venom (1)
- Venom gene evolution (1)
Institute
Die Zusammenstellung der Liste der charakteristischen Tierarten erfolgte analog der vom LAU (2002) geschilderten Vorgehensweise. Inzwischen konnten durch die vom LAU in den FFH-LRT Sachsen-Anhalts durchgeführten intensiven faunistischen Untersuchungen ein besseres Bild der charakteristischen und regional typischen Artengemeinschaften vermittelt werden. Allerdings stehen für einige der neu aufgenommenen FFH-LRT solche Untersuchungen noch aus. Deshalb werden hier in naher Zukunft verstärkte Anstrengungen nötig sein, die Wissenslücken zu schließen.
Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. Utilising a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and three new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.
Methodik
(2002)
Die vegetationskundliche und strukturelle Zuordnung der Lebensraumtypen erfolgt nach der vorrangig von Braun-Blanquet entwickelten Vegetationsklassifizierung, einer hierarchischen Gliederung der Vegetationstypen (Syntaxonomie), die die Ebenen der Assoziation, des Verbandes, der Ordnung und der Klasse umfasst. Hierbei ist die Assoziation die grundlegende Einheit, in der die Pflanzengesellschaften zusammengefasst werden, die sich durch gleiche charakteristische Arten(gruppen)kombinationen auszeichnen. Der Verband vereinigt ähnliche Assoziationen. Das sind bereits umfassendere, jedoch standörtlich noch recht einheitliche Vegetationseinheiten. In Ordnungen werden ähnliche Verbände zusammengefasst. Die Klasse vereinigt ähnliche Ordnungen.
Venoms have convergently evolved in all major animal lineages and are ideal candidates to unravel the genomic processes underlying convergent trait evolution. However, few animal groups have been studied in detail, and large-scale comparative genomic analyses to address toxin gene evolution are rare. The hyper-diverse hymenopterans are the most speciose group of venomous animals, but the origin of their toxin genes has been largely overlooked. We combined proteo-transcriptomics with comparative genomics compiling an up-to-date list of core bee venom proteins to investigate the origin of 11 venom genes in 30 hymenopteran genomes including two newly sequenced genomes of stingless bees. We found a more distinct pattern in which toxin genes originated predominantly by single gene co-option, a prevalent mechanism in parasitoid wasps. These are always accompanied by parallel expansion events in other bee and hymenopteran sister gene groups. The short toxic peptides melittin and apamin appear to be unique to bees, a result supported by a novel machine learning approach. Based on the syntenic pattern we propose here Anthophilin1 as a bee-unique gene family that includes apamin and MCDP. It appears that bees co-adapted their venom genes which predominantly already existed before the aculeate ovipositor evolved to a stinger which exclusively injects venom. Our results provide insight into the large-scale evolution of bee venom compounds, and we present here the first study revealing general processes of venom evolution at a comparative genomic level for this mega-diverse Hymenoptera.
Background: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected.
Results: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification.
Conclusions: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.