Refine
Document Type
- Article (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Araceae (1)
- ETP-ALL (1)
- FLT3 (1)
- Lemnaceae (1)
- NOTCH1 (1)
- T-ALL (1)
- Wendland (1)
- West-Germany (1)
- Wolffia arrhiza (1)
- acute lymphoblastic leukemia (1)
Institute
- Medizin (3)
Die in Amerika heimische Kolumbianische Zwergwasserlinse (Wolffia columbiana) tritt neuerdings in Europa als Neophyt auf und konnte in Niedersachsen zum ersten Mal im Jahr 2016 nachgewiesen werden. Im Hintergrund stehen die für den Naturschutz relevanten Fragen, wie viele vermeintliche Vorkommen von Wolffia arrhiza in Wirklichkeit Wolffia columbiana repräsentieren und ob dieser Neophyt die heimische und gefährdete Art Wolffia arrhiza verdrängen kann.
Background The Deltaretrovirus genus comprises viruses that infect humans (HTLV), various simian species (STLV) and cattle (BLV). HTLV-I is the main causative agent in adult T-cell leukemia in endemic areas and some of the simian T-cell lymphotropic viruses have been implicated in the induction of malignant lymphomas in their hosts. BLV causes enzootic bovine leukosis in infected cattle or sheep. During the past few years several new Deltaretrovirus isolates have been described in various primate species. Two new HTLV-like viruses in humans have recently been identified and provisionally termed HTLV-III and HTLV-IV. In order to identify a broad spectrum of Deltaretroviruses by a single PCR approach we have established a novel consensus PCR based on nucleotide sequence data obtained from 42 complete virus isolates (HTLV-I/-II, STLV-I/-II/-III, BLV). The primer sequences were based on highly interspecies-conserved virus genome regions. We used this PCR to detect Deltaretroviruses in samples from adult patients with a variety of rare T-cell neoplasms in Germany. Results: The sensitivity of the consensus PCR was at least between 10-2 and 10-3 with 100% specificity as demonstrated by serial dilutions of cell lines infected with either HTLV-I, HTLV-II or BLV. Fifty acute T-cell lymphoblastic leukemia (T-ALL) samples and 33 samples from patients with various rare mature T-cell neoplasms (T-PLL, Sezary syndrome and other T-NHL) were subsequently investigated. There were no cases with HTLV-I, HTLV-II or any other Deltaretroviruses. Conclusions: The results rule out a significant involvement of HTLV-I or HTLV-II in these disease entities and show that other related Deltaretroviruses are not likely to be involved. The newly established Deltaretrovirus PCR may be a useful tool for identifying new Deltaretroviruses.
A subgroup of pediatric acute T-lymphoblastic leukemia (T-ALL) was characterized by a gene expression profile comparable to that of early T-cell precursors (ETPs) with a highly unfavorable outcome. We have investigated clinical and molecular characteristics of the ETP-ALL subgroup in adult T-ALL. As ETP-ALL represents a subgroup of early T-ALL we particularly focused on this cohort and identified 178 adult patients enrolled in the German Acute Lymphoblastic Leukemia Multicenter studies (05/93–07/03). Of these, 32% (57/178) were classified as ETP-ALL based on their characteristic immunophenotype. The outcome of adults with ETP-ALL was poor with an overall survival of only 35% at 10 years, comparable to the inferior outcome of early T-ALL with 38%. The molecular characterization of adult ETP-ALL revealed distinct alterations with overexpression of stem cell-related genes (BAALC, IGFBP7, MN1, WT1). Interestingly, we found a low rate of NOTCH1 mutations and no FBXW7 mutations in adult ETP-ALL. In contrast, FLT3 mutations, rare in the overall cohort of T-ALL, were very frequent and nearly exclusively found in ETP-ALL characterized by a specific immunophenotype. These molecular characteristics provide biologic insights and implications with respect to innovative treatment strategies (for example, tyrosine kinase inhibitors) for this high-risk subgroup of adult ETP-ALL.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.