• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Screpanti, Emanuela (1)

Year of publication

  • 2005 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Institute

  • Biochemie und Chemie (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Structure of NhaA, a Na +/H + antiporter from Escherichia coli and insights into mechanism of action and regulation by pH (2005)
Screpanti, Emanuela
Sodium proton antiporters are ubiquitous membrane proteins found in the cytoplasmic and organelle membranes of cells of many different origins, including plants, animals and microorganisms. They are involved in cell energetics, and play primary roles in the homeostasis of intracellular pH, cellular Na+ content and cell volume. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of such Na+/H+ antiporters. NhaA is the essential Na+/H+ antiporter for pH and Na+ homeostasis (at alkaline pH) in Escherichia coli and many other enterobacteria. NhaA is an electrogenic Na+/H+ antiporter that exchanges 2H+ for 1Na+ (or Li+). NhaA shares with many other prokaryotic and eukaryotic antiporters a very strong dependence on pH. In order to achieve three-dimensional structure of NhaA, the previously described NhaA protein preparation was modified: (i) the wild type bacterial strain (TA16) used for homologous over-expression of NhaA was replaced with a delta nhaA strain (RK20). As a result, the purity and homogeneity of the sample was significantly improved; (ii) the previously two-step purification procedure was shortened to a single step affinity chromatography purification; (iii) a wide-range screening of crystallisation conditions, more than 20,000, was performed; (iv) a Seleno-L-methionine (SeMet) NhaA derivative was produced in order to solve the phases during structure determination. In parallel, attempts of production and crystallisation of co-complexes composed of NhaA and antibody fragments have been made. Four different monoclonal antibodies were available against NhaA. Selected antibody fragments were produced and the stability of the complex analysed. Here, the crystal structure of the pH down-regulated secondary transporter NhaA of Escherichia coli is presented at 3.45 Å resolution. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. A possible mechanism is proposed: the binding of charged substrates causes electric imbalance inducing movements, which allow for a rapid alternating access mechanism. This ion exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the cytoplasmic funnel entry. The structure represents a novel fold that provides two major insights: it reveals the structural basis for the mechanism of Na+/H+ exchange and its unique regulation by pH in NhaA and in many other similar antiporters. Furthermore, it is also important for the understanding of the architecture of membrane proteins in general. However, although many aspects of the ion-translocation mechanism and pH regulation are clarified by the NhaA structure, higher resolution structures with Li+ or Na+ bound are required for understanding the ligand binding and the translocation mechanism at the atomic level. The alkaline pH-induced conformation is essential to further understand the pH-control and proton access to the binding site.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks