Refine
Document Type
- Preprint (10)
- Conference Proceeding (3)
- Article (1)
- Part of a Book (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Deutsch (4)
- Satzanalyse (2)
- Automatische Sprachanalyse (1)
- Bairisch (1)
- Englisch (1)
- Fehlererkennung (1)
- Fehlertoleranz (1)
- Freier Relativsatz (1)
- Ilmenau <2000> (1)
- Interrogativsatz (1)
Institute
- Extern (12)
Chunk parsing has focused on the recognition of partial constituent structures at the level of individual chunks. Little attention has been paid to the question of how such partial analyses can be combined into larger structures for complete utterances. Such larger structures are not only desirable for a deeper syntactic analysis. They also constitute a necessary prerequisite for assigning function-argument structure. The present paper offers a similaritybased algorithm for assigning functional labels such as subject, object, head, complement, etc. to complete syntactic structures on the basis of prechunked input. The evaluation of the algorithm has concentrated on measuring the quality of functional labels. It was performed on a German and an English treebank using two different annotation schemes at the level of function argument structure. The results of 89.73% correct functional labels for German and 90.40%for English validate the general approach.
Chunk parsing has focused on the recognition of partial constituent structures at the level of individual chunks. Little attention has been paid to the question of how such partial analyses can be combined into larger structures for complete utterances. The TüSBL parser extends current chunk parsing techniques by a tree-construction component that extends partial chunk parses to complete tree structures including recursive phrase structure as well as function-argument structure. TüSBLs tree construction algorithm relies on techniques from memory-based learning that allow similarity-based classification of a given input structure relative to a pre-stored set of tree instances from a fully annotated treebank. A quantitative evaluation of TüSBL has been conducted using a semi-automatically constructed treebank of German that consists of appr. 67,000 fully annotated sentences. The basic PARSEVAL measures were used although they were developed for parsers that have as their main goal a complete analysis that spans the entire input.This runs counter to the basic philosophy underlying TüSBL, which has as its main goal robustness of partially analyzed structures.
This paper profiles significant differences in syntactic distribution and differences in word class frequencies for two treebanks of spoken and written German: the TüBa-D/S, a treebank of transliterated spontaneous dialogs, and the TüBa-D/Z treebank of newspaper articles published in the German daily newspaper ´die tageszeitung´(taz). The approach can be used more generally as a means of distinguishing and classifying language corpora of different genres.
Das Chunkparsing bietet einen besonders vielversprechenden Ansatz zum robusten, partiellen Parsing mit dem Ziel einer breiten Datenabdeckung. Ziel beim Chunkparsing ist eine partielle, nicht-rekursive syntaktische Struktur. Dieser extrem effiziente Parsing-Ansatz läßt sich als Kaskade endlicher Transducer realisieren. In diesem Beitrag wird TüSBL vorgestellt, ein System, bei dem die Eingabe aus spontaner, gesprochener Spache besteht, die dem Parser in Form eines Worthypothesengraphen aus einem Spracherkenner zur Verfügung gestellt wird. Chunkparsing ist für eine solche Anwendung besonders geeignet, da es fragmentarische oder nicht wohlgeformte Äußerungen robust behandeln kann. Des weiteren wird eine Baumkonstruktionskomponente vorgestellt, die die partiellen Chunkstrukturen zu vollständigen Bäumen mit grammatischen Funktionen erweitert. Das System wird anhand manuell überprüfter Systemeingaben evaluiert, da sich die üblichen Evaluationsparameter hierfür nicht eignen.
The purpose of this paper is to describe the TüBa-D/Z treebank of written German and to compare it to the independently developed TIGER treebank (Brants et al., 2002). Both treebanks, TIGER and TüBa-D/Z, use an annotation framework that is based on phrase structure grammar and that is enhanced by a level of predicate-argument structure. The comparison between the annotation schemes of the two treebanks focuses on the different treatments of free word order and discontinuous constituents in German as well as on differences in phrase-internal annotation.
This paper profiles significant differences in syntactic distribution and differences in word class frequencies for two treebanks of spoken and written German: the TüBa-D/S, a treebank of transliterated spontaneous dialogues, and the TüBa-D/Z treebank of newspaper articles published in the German daily newspaper die tageszeitung´(taz). The approach can be used more generally as a means of distinguishing and classifying language corpora of different genres.
This paper presents a comparative study of probabilistic treebank parsing of German, using the Negra and TüBa-D/Z treebanks. Experiments with the Stanford parser, which uses a factored PCFG and dependency model, show that, contrary to previous claims for other parsers, lexicalization of PCFG models boosts parsing performance for both treebanks. The experiments also show that there is a big difference in parsing performance, when trained on the Negra and on the TüBa-D/Z treebanks. Parser performance for the models trained on TüBa-D/Z are comparable to parsing results for English with the Stanford parser, when trained on the Penn treebank. This comparison at least suggests that German is not harder to parse than its West-Germanic neighbor language English.
This report explores the question of compatibility between annotation projects including translating annotation formalisms to each other or to common forms. Compatibility issues are crucial for systems that use the results of multiple annotation projects. We hope that this report will begin a concerted effort in the field to track the compatibility of annotation schemes for part of speech tagging, time annotation, treebanking, role labeling and other phenomena.
This paper provides an overview of current research on a hybrid and robust parsing architecture for the morphological, syntactic and semantic annotation of German text corpora. The novel contribution of this research lies not in the individual parsing modules, each of which relies on state-of-the-art algorithms and techniques. Rather what is new about the present approach is the combination of these modules into a single architecture. This combination provides a means to significantly optimize the performance of each component, resulting in an increased accuracy of annotation.