Refine
Year of publication
Document Type
- Preprint (221)
- Article (166)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (389)
Has Fulltext
- yes (389)
Is part of the Bibliography
- no (389)
Keywords
- LHC (10)
- ALICE experiment (4)
- Heavy Ions (4)
- ALICE (3)
- Hadron-Hadron Scattering (3)
- pp collisions (3)
- Beauty production (2)
- Charm physics (2)
- Heavy-ion collisions (2)
- Monte Carlo (2)
Institute
- Physik (389)
- Frankfurt Institute for Advanced Studies (FIAS) (334)
- Informatik (322)
- Hochschulrechenzentrum (2)
We present the first measurement of fluctuations from event to event in the production of strange particles in collisions of heavy nuclei. The ratio of charged kaons to charged pions is determined for individual central Pb+Pb collisions. After accounting for the fluctuations due to detector resolution and finite number statistics we derive an upper limit on genuine non-statistical fluctuations, perhaps related to a first or second order QCD phase transition. Such fluctuations are shown to be very small.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.
Rapidity distributions for Lambda and anti-Lambda hyperons in central Pb-Pb collisions at 40, 80 and 158 AGeV and for K 0 s mesons at 158 AGeV are presented. The lambda multiplicities are studied as a function of collision energy together with AGS and RHIC measurements and compared to model predictions. A different energy dependence of the Lambda/pi and anti-Lambda/pi is observed. The anti-Lambda/Lambda ratio shows a steep increase with collision energy. Evidence for a anti-Lambda/anti-p ratio greater than 1 is found at 40 AGeV.
Experiment NA49 at the Cern SPS uses a large acceptance detector for a systematic study of particle yields and correlations in nucleus-nucleus, nucleon-nucleus and nucleon-nucleon collisions. Preliminary results for Pb+Pb collisions at 40, 80 and 158 A*GeV beam energy are shown and compared to measurements at lower and higher energies.
Rapidity distributions for $\Lambda$ and $\bar{\Lambda}$ hyperons in central Pb-Pb collisions at 40, 80 and 158 A$\cdot$GeV and for ${\rm K}_{s}^{0}$ mesons at 158 A$\cdot$GeV are presented. The lambda multiplicities are studied as a function of collision energy together with AGS and RHIC measurements and compared to model predictions. A different energy dependence of the $\Lambda/\pi$ and $\bar{\Lambda}/\pi$ is observed. The $\bar{\Lambda}/\Lambda$ ratio shows a steep increase with collision energy. Evidence for a $\bar{\Lambda}/\bar{\rm p}$ ratio greater than 1 is found at 40 A$\cdot$GeV.
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.
We present the first ever measurements of femtoscopic correlations between the K0 S and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0 SK− are found to be equal within the experimental uncertainties to those for K0 SK+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark
First results on the longitudinal asymmetry and its effect on the pseudorapidity distributions in Pb–Pb collisions at √sNN = 2.76 TeV at the Large Hadron Collider are obtained with the ALICE detector. The longitudinal asymmetry arises because of an unequal number of participating nucleons from the two colliding nuclei, and is estimated for each event by measuring the energy in the forward neutron-ZeroDegree-Calorimeters (ZNs). The effect of the longitudinal asymmetry is measured on the pseudorapidity distributions of charged particles in the regions |η| < 0.9, 2.8 < η < 5.1 and −3.7 < η < −1.7 by taking the ratio of the pseudorapidity distributions from events corresponding to different regions of asymmetry. The coefficients of a polynomial fit to the ratio characterise the effect of the asymmetry. A Monte Carlo simulation using a Glauber model for the colliding nuclei is tuned to reproduce the spectrum in the ZNs and provides a relation between the measurable longitudinal asymmetry and the shift in the rapidity (y0) of the participant zone formed by the unequal number of participating nucleons. The dependence of the coefficient of the linear term in the polynomial expansion, c1, on the mean value of y0 is investigated.
The production of the charm-strange baryon Ξc0 is measured for the first time at the LHC via its semileptonic decay into eΞ−+νe in pp collisions at s=7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1<pT<8 GeV/c at mid-rapidity, |y|<0.5. The transverse momentum dependence of the Ξc0 baryon production relative to the D0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.