Refine
Document Type
- Preprint (10)
- Article (8)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- LHC (3)
- ALICE (2)
- 900 GeV (1)
- Charge fluctuations (1)
- Femtoscopy (1)
- HBT (1)
- Heavy-ion collisions (1)
- Intensity interferometry (1)
- Nuclear modification factor (1)
- PYTHIA (1)
Institute
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
System size and centrality dependence of the balance function in A + A collisions at √sNN = 17.2 GeV
(2004)
Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.
Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
Report from NA49
(2004)
The most recent data of NA49 on hadron production in nuclear collisions at CERN SPS energies are presented. Anomalies in the energy dependence of pion and kaon production in central Pb+Pb collisions are observed. They suggest that the onset of deconfinement is located at about 30 AGeV. Large multiplicity and transverse momentum fluctuations are measured for collisions of intermediate mass systems at 158 AGeV. The need for a new experimental programme at the CERN SPS is underlined.
Event-by-event fluctuations of particle ratios in central Pb + Pb collisions at 20 to 158 AGeV
(2004)
In the vicinity of the QCD phase transition, critical fluctuations have been predicted to lead to non-statistical fluctuations of particle ratios, depending on the nature of the phase transition. Recent results of the NA49 energy scan program show a sharp maximum of the ratio of K+ to Pi+ yields in central Pb+Pb collisions at beam energies of 20-30 AGeV. This observation has been interpreted as an indication of a phase transition at low SPS energies. We present first results on event-by-event fluctuations of the kaon to pion and proton to pion ratios at beam energies close to this maximum.
A non-monotonic energy dependence of the K + / pi + ratio with a sharp maximum close to 30 A GeV is observed in central Pb+Pb collisions. Within a statistical model of the early stage, this is interpreted as a sign of the phase transition to a QGP, which causes a sharp change in the energy dependence of the strangeness to entropy ratio. This observation naturally motivates us to study the production of multistrange hyperons (Xi, Omega) as a function of the beam energy. Furthermore it was suggested that the kinematic freeze-out of Omega takes place directly at QGP hadronization. If this is indeed the case, the transverse momentum spectra of the Omega directly reflect the transverse expansion velocity of a hadronizing QGP. In this report we show preliminary NA49 results on Omega - and Omega + production in central Pb+Pb collisions at 40 and 158 A GeV and compare them to measurements of Xi - and Xi + production in central Pb+Pb collisions at 30, 40, 80 and 158 A GeV.
Results are presented on event-by-event electric charge fluctuations in central Pb+Pb collisions at 20, 30, 40, 80 and 158 AGeV. The observed fluctuations are close to those expected for a gas of pions correlated by global charge conservation only. These fluctuations are considerably larger than those calculated for an ideal gas of deconfined quarks and gluons. The present measurements do not necessarily exclude reduced fluctuations from a quark-gluon plasma because these might be masked by contributions from resonance decays.
System-size dependence of strangeness production in nucleus-nucleus collisions at √sNN = 17.3 GeV
(2005)
Emission of pi, K, phi and Lambda was measured in near-central C+C and Si+Si collisions at 158 AGeV beam energy. Together with earlier data for p+p, S+S and Pb+Pb, the system-size dependence of relative strangeness production in nucleus-nucleus collisions is obtained. Its fast rise and the saturation observed at about 60 participating nucleons can be understood as onset of the formation of coherent partonic subsystems of increasing size. PACS numbers: 25.75.-q