Refine
Year of publication
Document Type
- Article (18)
Language
- English (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Institute
- Geowissenschaften (18)
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on vertical tracer profiles and relative vertical tracer gradients, using tropopause-referenced coordinates, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS).
Observations were obtained during four tropical campaigns performed from 1999 to 2006 with the research aircraft Geophysica and have been compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL (~500 m) allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.
The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone and carbon monoxide gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified by their different chemical composition.
The joint analysis and comparison of observed and modelled data allows to state that the model can represent the background TTL structure and its seasonal variability rather accurately. The model estimate of the thickness of the interface region between tropospheric and stratospheric regimes agrees well with average values inferred from observations. On the other hand, the measurements can be influenced by regional scale variability, local transport processes as well as deep convection, that can not be captured by the model.
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame.
Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone and the perturbed water distribution in the TTL is illustrated and discussed.
A suite of diagnostics is applied to in-situ aircraft measurements and one Chemistry-Climate Model (CCM) data to characterize the vertical structure of the Tropical Tropopause Layer (TTL). The diagnostics are based on the vertical tracers profiles, relative vertical tracers gradients, and tracer-tracer relationships in the tropical Upper Troposphere/Lower Stratosphere (UT/LS), using tropopause coordinates.
Observations come from the four tropical campaigns performed from 1998 to 2006 with the research aircraft Geophysica and have been directly compared to the output of the ECHAM5/MESSy CCM. The model vertical resolution in the TTL allows for appropriate comparison with high-resolution aircraft observations and the diagnostics used highlight common TTL features between the model and the observational data.
The analysis of the vertical profiles of water vapour, ozone, and nitrous oxide, in both the observations and the model, shows that concentration mixing ratios exhibit a strong gradient change across the tropical tropopause, due to the role of this latter as a transport barrier and that transition between the tropospheric and stratospheric regimes occurs within a finite layer. The use of relative vertical ozone gradients, in addition to the vertical profiles, helps to highlight the region where this transition occurs and allows to give an estimate of its thickness. The analysis of the CO-O3 and H2O-O3 scatter plots and of the Probability Distribution Function (PDF) of the H2O-O3 pair completes this picture as it allows to better distinguish tropospheric and stratospheric regimes that can be identified, first, by their differing chemical composition.
The joint analysis and comparison of observed and modelled data allows us to evaluate the capability of the model in reproducing the observed vertical structure of the TTL and its variability, and also to assess whether observations from particular regions on a monthly timescale can be representative of the fine scale mean structure of the Tropical Tropopause Layer.
We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition.
We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition.
During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board the high-altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the entire TTL region roughly extending between 350 and 420 K. Here, analysis of transport across the TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by meteorological analysis winds and heating/cooling rates derived from a radiation calculation. Below the tropopause, the model smoothly transforms from the isentropic to the hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the vertical wind of the meteorological analysis. As in previous CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observations and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the tropical flanks of the subtropical jets and, to some extent, in the the outflow regions of the large-scale convection, offers an explanation for the upward transport of trace species from the main convective outflow at around 350 K up to the tropical tropopause around 380 K.
During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K.
Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates.
Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets.
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics.
Tracer measurements in the tropical tropopause layer during the AMMA/SCOUT-O3 aircraft campaign
(2009)
We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL) above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, horizontal inmixing across the subtropical tropopause, and horizontal transport across the subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin. When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights, increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10 and 25° N latitude where isentropic mixing between these two regions may occur.
We have used the SLIMCAT 3-D off-line chemical transport model (CTM) to quantify the Arctic chemical ozone loss in the year 2002/2003 and compare it with similar calculations for the winters 1999/2000 and 2003/2004. Recent changes to the CTM have improved the model's ability to reproduce polar chemical and dynamical processes. The updated CTM uses σ-θ as a vertical coordinate which allows it to extend down to the surface. The CTM has a detailed stratospheric chemistry scheme and now includes a simple NAT-based denitrification scheme in the stratosphere.
In the model runs presented here the model was forced by ECMWF ERA40 and operational analyses. The model used 24 levels extending from the surface to ~55 km and a horizontal resolution of either 7.5°×7.5° or 2.8°×2.8°. Two different radiation schemes, MIDRAD and the CCM scheme, were used to diagnose the vertical motion in the stratosphere. Based on tracer observations from balloons and aircraft, the more sophisticated CCM scheme gives a better representation of the vertical transport in this model which includes the troposphere. The higher resolution model generally produces larger chemical O3 depletion, which agrees better with observations.
The CTM results show that very early chemical ozone loss occurred in December 2002 due to extremely low temperatures and early chlorine activation in the lower stratosphere. Thus, chemical loss in this winter started earlier than in the other two winters studied here. In 2002/2003 the local polar ozone loss in the lower stratosphere was ~40% before the stratospheric final warming. Larger ozone loss occurred in the cold year 1999/2000 which had a persistently cold and stable vortex during most of the winter. For this winter the current model, at a resolution of 2.8°×2.8°, can reproduce the observed loss of over 70% locally. In the warm and more disturbed winter 2003/2004 the chemical O3 loss was generally much smaller, except above 620 K where large losses occurred due to a period of very low minimum temperatures at these altitudes.