Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
In late 2013, a whole air flask collection program started at the Taunus Observatory (TO) in central Germany. Being a rural site in close vicinity to the densely populated Rhein-Main area, Taunus Observatory allows to assess local and regional emissions. Owed to its altitude of 825 m, the site also regularly experiences background conditions, especially when air masses approach from north-westerly directions. With a large footprint area mainly covering central Europe north of the Alps, halocarbon measurements at the site have the potential to improve the data base for estimation of regional and total European halogenated greenhouse gas emissions. Flask samples are collected weekly for offline analysis using a GC-MS system employing a quadrupole as well as a time-of-flight mass spectrometer. As background reference, additional samples are collected approximately bi-weekly at the Mace Head Atmospheric Research Station (MHD) when air masses approach from the site’s clean air sector. Thus the TO time series can be linked to the in-situ AGAGE measurements and the NOAA flask sampling program at MHD. An iterative baseline identification procedure separates polluted samples from baseline data. While there is good agreement of baseline mixing ratios between TO and MHD, with a larger variability of mixing ratios at the continental site, measurements at TO are regularly influenced by elevated halocarbon mixing ratios. Here, first time series are presented for CFC-11, CFC-12, HCFC-22, HFC-134a, HFC-227ea, HFC-245fa, and dichloromethane. While atmospheric mixing ratios of the CFCs decrease, they increase for the HCFC and the HFCs. Small unexpected differences between CFC-11 and CFC-12 are found with regard to the occurrence of high mixing ratio events and seasonality, although production and use of both compounds are strictly regulated by the Montreal Protocol, and therefore a similar decrease of atmospheric mixing ratios should occur. Dichloromethane, a solvent about which recently concerns have risen regarding its growing influence on stratospheric ozone depletion, does not show a significant trend with regard to both, baseline mixing ratios and the occurrence of pollution events at Taunus Observatory for the time period covered, indicating stable emissions in the regions that influence the site. An analysis of HYSPLIT trajectories reveals differences in halocarbon mixing ranges depending on air mass origin.
Production and use of many synthetic halogenated trace gases are regulated internationally due to their contribution to stratospheric ozone depletion or climate change. In many applications they have been replaced by shorter-lived compounds, which have become measurable in the atmosphere as emissions increased. Non-target monitoring of trace gases rather than targeted measurements of well-known substances is needed to keep up with such changes in the atmospheric composition. We regularly deploy gas chromatography (GC) coupled to time-of-flight mass spectrometry (TOF-MS) for analysis of flask air samples and in situ measurements at the Taunus Observatory, a site in central Germany. TOF-MS acquires data over a continuous mass range that enables a retrospective analysis of the dataset, which can be considered a type of digital air archive. This archive can be used if new substances come into use and their mass spectrometric fingerprint is identified. However, quantifying new replacement halocarbons can be challenging, as mole fractions are generally low, requiring high measurement precision and low detection limits. In addition, calibration can be demanding, as calibration gases may not contain sufficiently high amounts of newly measured substances or the amounts in the calibration gas may have not been quantified. This paper presents an indirect data evaluation approach for TOF-MS data, where the calibration is linked to another compound which could be quantified in the calibration gas. We also present an approach to evaluate the quality of the indirect calibration method, select periods of stable instrument performance and determine well suited reference compounds. The method is applied to three short-lived synthetic halocarbons: HFO-1234yf, HFO-1234ze(E), and HCFO-1233zd(E). They represent replacements for longer-lived hydrofluorocarbons (HFCs) and exhibit increasing mole fractions in the atmosphere.
The indirectly calibrated results are compared to directly calibrated measurements using data from TOF-MS canister sample analysis and TOF-MS in situ measurements, which are available for some periods of our dataset. The application of the indirect calibration method on several test cases can result in uncertainties of around 6 % to 11 %. For hydro(chloro-)fluoroolefines (denoted H(C)FOs), uncertainties up to 23 % are achieved. The indirectly calculated mole fractions of the investigated H(C)FOs at Taunus Observatory range between measured mole fractions at urban Dübendorf and Jungfraujoch stations in Switzerland.
In late 2013, a whole air flask collection programme was started at Taunus Observatory (TO) in central Germany. Being a rural site in close proximity to the Rhine–Main area, Taunus Observatory allows assessment of emissions from a densely populated region. Owing to its altitude of 825 m, the site also regularly experiences background conditions, especially when air masses approach from north-westerly directions. With a large footprint area mainly covering central Europe north of the Alps, halocarbon measurements at the site have the potential to improve the database for estimation of regional and total European halogenated greenhouse gas emissions. Flask samples are collected weekly for offline analysis using a GC/MS system simultaneously employing a quadrupole as well as a time-of-flight mass spectrometer. As background reference, additional samples are collected approximately once every 2 weeks at the Mace Head Atmospheric Research Station (MHD) when air masses approach from the site's clean air sector. Thus the time series at TO can be linked to the in situ AGAGE measurements and the NOAA flask sampling programme at MHD. An iterative baseline identification procedure separates polluted samples from baseline data. While there is good agreement of baseline mixing ratios between TO and MHD, with a larger variability of mixing ratios at the continental site, measurements at TO are regularly influenced by elevated halocarbon mixing ratios. Here, first time series are presented for CFC-11, CFC-12, HCFC-22, HFC-134a, HFC-227ea, HFC-245fa, and dichloromethane. While atmospheric mixing ratios of the chlorofluorocarbons (CFCs) decrease, they increase for the hydrochlorofluorocarbons (HCFCs) and the hydrofluorocarbons (HFCs). Small unexpected differences between CFC-11 and CFC-12 are found with regard to frequency and relative enhancement of high mixing ratio events and seasonality, although production and use of both compounds are strictly regulated by the Montreal Protocol, and therefore a similar decrease in atmospheric mixing ratios should occur. Dichloromethane, a solvent about which recently concerns have been raised regarding its growing influence on stratospheric ozone depletion, does not show a significant trend with regard to both baseline mixing ratios and the occurrence of pollution events at Taunus Observatory for the time period covered, indicating stable emissions in the regions that influence the site. An analysis of trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model reveals differences in halocarbon mixing ranges depending on air mass origin.
We present novel measurements of five short-lived brominated source gases (CH2Br2, CHBr3, CH2ClBr, CHCl2Br and CHClBr2) obtained using a gas chromatograph-mass spectrometer system on board the High Altitude and Long Range Research Aircraft (HALO). The instrument is extremely sensitive due to the use of chemical ionisation, allowing detection limits in the lower parts per quadrillion (10-15) range. Data from three campaigns using the HALO aircraft are presented, where the Upper Troposphere/Lower Stratosphere (UTLS) of the Northern Hemisphere mid to high latitudes were sampled during winter and during late summer to early fall. We show that an observed decrease with altitude in the stratosphere is consistent with the relative lifetimes of the different compounds. Distributions of the five source gases and total organic bromine just below the tropopause shows an increase in mixing ratio with latitude, in particular during polar winter. This increase in mixing ratio is explained by increasing lifetimes at higher latitudes during winter. As the mixing ratio at the extratropical tropopause are generally higher than those derived for the tropical tropopause, extratropical troposphere-to-stratosphere transport will result in elevated levels of organic bromine in comparison to air transported over the tropical tropopause. The observations are compared to model estimates using different emission scenarios. A scenario which has emissions most strongly concentrated to low latitudes cannot reproduce the observed latitudinal distributions and will tend to overestimate bromine input through the tropical tropopause from CH2Br2 and CHBr3. Consequently, the scenario also overestimates the amount of brominated organic gases in the stratosphere. The two scenarios with the highest overall emissions of CH2Br2 tend to overestimate mixing ratios at the tropical tropopause but are in much better agreement with extratropical tropopause values, showing that not only total emissions but also latitudinal distributions in the emissions are of importance. While an increase in tropopause values with latitude is reproduced with all emission scenarios during winter, the simulated extratropical tropopause values are on average lower than the observations during late summer to fall. We show that a good knowledge of the latitudinal distribution of tropopause mixing ratios and of the fractional contributions of tropical and extratropical air is needed to derive stratospheric inorganic bromine in the lowermost stratosphere from observations. Depending on the underlying emission scenario, differences of a factor 2 in reactive bromine derived from observations and model outputs are found for the lowermost stratosphere, based on source gas injection. We conclude that a good representation of the contributions of different source regions is required in models for a robust assessment of the role of short-lived halogen source gases on ozone depletion in the UTLS.
Background: Point of care devices for performing targeted coagulation substitution in bleeding patients have become increasingly important in recent years. New on the market is the Quantra® from HemoSonics (LC, Charlottesville, VA, US). It uses sonorheometry, a sonic estimation of elasticity via resonance (SEER), a novel ultrasound-based technology that measures viscoelastic properties of whole blood. Several studies have already shown the comparability with devices already established on the market such as the ROTEM® (TEM International GmbH, Munich, Germany).
Objective: In contrast to existing studies, the planned study will be the first prospective interventional study using the new Quantra® system in a cardiac surgical patient cohort. The aim is to investigate the non-inferiority between an already existing coagulation algorithm, based on ROTEM®/Multiplate®, and a new algorithm based on the Quantra®, for the treatment of coagulopathic cardiac surgical patients.
Methods: The study is divided into two phases. In an initial observation phase, whole blood samples of 20 patients will be analyzed using both ROTEM®/Multiplate® and Quantra® obtained at three defined points of time (prior to surgery, after completion of cardiopulmonary bypass, on arrival in the intensive care unit). The obtained threshold values will be used to create an algorithm for hemotherapy. In a second intervention phase, the new algorithm will be tested against an algorithm used routineously for years at our department for non-inferiority.
Results: The main objective of the examination is the cumulative loss of blood within 24 hours after surgery. Statistical calculations based on literature and in-house data suggest that the new algorithm is not inferior if the difference in cumulative blood loss is < 150ml/24 h.
Conclusions: Because of the comparability of the Quantra® sonorheometry system with ROTEM® rotational thromboelastometric measurement methods, the existing hemotherapy treatment algorithm can be adapted to the Quantra device with a proof of non-inferiority. Clinical Trial: International Registered Report Identifier (IRRID): clinicaltrials.gov: NCT03902275