Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
The IrIII atom of the title compound, [Ir(C11H8N)2Cl(CH3CN)], displays a distorted octahedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10)°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11) and C—Ir—Cl = 176.22 (9)°]. The pyridylphenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridylphenyl group being 5.6 (2) and 5.8 (1)°. The crystal packing shows intermolecular C—H[cdots, three dots, centered]Cl, C—H[cdots, three dots, centered]π(acetonitrile) and C—H[cdots, three dots, centered]π(pyridylphenyl) contacts.
The title compound, [Tl4(C4H9O)4], featuring a (Tl—O)4 cube, crystallizes with a quarter-molecule (located on a special position of site symmetry An external file that holds a picture, illustration, etc. Object name is e-66-m1621-efi1.jpg..) and a half-molecule (located on a special position of site symmetry 23.) in the asymmetric unit. The Tl—O bond distances range from 2.463 (12) to 2.506 (12) Å. All O—Tl—O bond angles are smaller than 90° whereas the Tl—O—Tl angles are wider than a rectangular angle.
The title compound, C25H20N4O2, is a ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligand. The dihedral angles between the planes of the pyrazole rings and their attached phenyl rings are 17.4 (3) and 5.9 (4)°. The pyrazole rings make a dihedral angle of 87.84 (16)°. One of the two hydroxy groups forms an intramolecular hydrogen bond to the other hydroxy group, whereas the second is involved in an intermolecular O—H[cdots, three dots, centered]N hydrogen bond. As a result of these intermolecular hydrogen bonds, helical chains running along the b axis are formed.
Die vorliegende Arbeit beschäftigte sich mit der Entwicklung, Synthese und
Charakterisierung neuartiger redoxaktiver Liganden und deren Metallkomplexen. Basierend
auf dem para- und ortho-Hydrochinon / Benzochinon-Redoxsystem wurden 13 neue
Bis(pyrazol-1-yl)methan-Liganden (28 – 36 und 67 – 70; Schema 47) synthetisiert und
vollständig charakterisiert. Ein Schwerpunkt lag auf der Einführung von Substituenten am
Bis(pyrazol-1-yl)methan-Donor, um deren Einfluss auf das N,N′-Koordinationsverhalten
gegenüber Metallionen zu untersuchen. In Analogie zu den klassichen Skorpionaten sind
Substituenten in Position 3 der Pyrazolringe in der Lage, koordinativ ungesättigte
Metallzentren kinetisch zu stabilisieren, was für potentielle Anwendungen in der Katalyse
essentiell ist. Bei den ortho-chinoiden Liganden (67 – 70; Schema 47) erfüllt die redoxaktive
Gruppe eine zweite Funktion, nämlich als Chelatdonor gegenüber Metallzentren, was die
Synthese und Untersuchung (hetero-)dinuklearer Komplexe erlaubt.
Schema 47: In dieser Arbeit synthetisierte und charakterisierte redoxaktive Bis(pyrazol-1-yl)methan-
Liganden.
Die kristallographische Charakterisierung von 10 dieser Liganden (28 – 33, 67 – 70) zeigte
größtenteils sehr ähnliche strukturelle Parameter. Ein steigender sterischer Anspruch der
Substituenten am Bis(pyrazol-1-yl)methan führte zu einer leichten Streckung der
Chinon–Bis(pyrazol-1-yl)methan-Bindung und zu kurzen Kontakten zwischen Substituenten
am zentralen Methin-Kohlenstoffatom und den ipso- (HQ-C1) bzw. ortho-Kohlenstoffatomen
(HQ-C2) am sechsgliedrigen Ring. Diese kurzen Kontakte spielten in der oxidativen
Demethylierung von 32 eine Rolle. Während alle anderen para-chinoiden Liganden mit
Cerammoniumnitrat (CAN) zu den erwarteten para-Benzochinon-Derivaten reagierten
(Schema 48), wurde im Zuge der Oxidation von 32 ein zusätzliches Sauerstoffatom am
sechsgliedrigen Ring eingeführt (47; Schema 48). Im Gegenzug wurde die sterisch am
stärksten abgeschirmte Methoxygruppe nicht oxidativ demethyliert. Letztendlich konnte
gezeigt werden, dass (i) das neu eingeführte Sauerstoffatom von atmosphärischem Sauerstoff
stammt und (ii) alle fünf Methylgruppen und beide Methoxygruppen in 32 für die Oxidation
essentiell sind.
Zusammenfassung
72
Schema 48: Oxidation der para-chinoiden Bis(pyrazol-1-yl)methan-Liganden mit CAN.
Die Cyclovoltammogramme der ortho-chinoiden Bis(pyrazol-1-yl)methan-Liganden
(untersucht am Beispiel von 67, 68 und 70) zeigten irreversible Redoxwellen, da im Zuge der
Oxidation OH-Protonen abgespalten wurden; die Redoxpotentiale liegen in einem mit
chemischen Oxidationsmitteln gut zugänglichen Bereich. 70 wurde von CAN erfolgreich
oxidiert, das Produkt 71 zersetzte sich unter den Reaktionsbedingungen allerdings sehr
schnell und konnte nicht isoliert, sondern lediglich als Additionsprodukt von 4-tert-
Butylpyridin abgefangen werden. Unter optimierten Reaktionsbedingungen und mit DDQ als
Oxidationsmittel ließen sich 70 und 68 in ihre oxidierte Form überführen und in Reinform
gewinnen. Die für ortho-Benzochinone typische Neigung zur Zersetzung wurde auch bei 71
und 73 beobachtet, wobei letzteres sich wesentlich schneller zersetzte (innerhalb von
Stunden) als 71 (innerhalb eines Tages).
Abb. 36: N,N′-Cobalt- und Palladium-Komplexe 59, 60, 74 und 75.
Die Koordinationschemie repräsentativer Vertreter der 13 redoxaktiven Bis(pyrazol-1-
yl)methan-Liganden wurde untersucht. Bereits der sterisch nur mäßig anspruchsvolle parachinoide
Ligand 29 ist in der Lage, koordinativ ungesättigte CoII-Ionen kinetisch gegenüber
der Bildung von 1:2 Komplexen zu stabilisieren. Im Festkörper liegen ausschließlich
Verbindungen mit einer 1:1 Zusammensetzung von Ligand zu CoII vor (59 und 60; Abb. 36).
In Lösung scheinen hingegen Gleichgewichte zu existieren, in denen auch die koordinativ
abgesättigten oktaedrischen 2:1 Komplexe auftreten. Die ortho-chinoiden Liganden 67 und 68
bildeten selektiv entsprechende N,N′-koordinierte PdCl2-Komplexe, ohne dass das ortho-
Hydrochinonat (Catecholat) als konkurrierender O,O′-Donor wirkte (74 und 75).
Zusammenfassung
73
Es zeigte sich jedoch auch, dass sterisch sehr anspruchsvolle Substituenten am
Bis(pyrazol-1-yl)methan-Fragment in Reaktionen mit Übergangsmetallen zu einer Zersetzung
des Ligandengerüsts führen können. So reagierte der para-chinoide tert-Butyl-substituierte
Ligand 31 mit [Co(NO3)2] zu [(HpztBu,H)2Co(NO3)2] (63). Eine analoge Zersetzung zu trans-
[(HpzR,H)2PdCl2] (76: R = Ph und 77: R = tBu) wurde nach der Reaktion der ortho-chinoiden
Liganden 69 bzw. 70 mit [PdCl2]-Quellen beobachtet.
Schema 49: Synthese von O,O′-Koordinationskomplexen der ortho-chinoiden Bis(pyrazol-1-
yl)methan-Liganden 68, 69 und 70.
Die ortho-chinoiden Bis(pyrazol-1-yl)methan-Liganden (67 – 70) besitzen mit ihrem
Catecholat-O,O′-Donor eine zweite Koordinationsstelle, was diese Liganden für die Synthese
von dinuklearen Komplexen interessant macht. Da gezeigt werden konnte, dass [PdCl2]
selektiv an den Bis(pyrazol-1-yl)methan-Donor koordiniert (vgl. 59, 60, 74 und 75; Abb. 36),
galt es als nächstes zu evaluieren, ob eine ähnlich selektive Bindung anderer Metallionen an
den O,O′-Donor möglich ist.
Abb. 37: Molekulare Strukturen ausgewählter O,O′-Koordinationskomplexe ortho-chinoider
Bis(pyrazol-1-yl)methan-Komplexe 82 (links), 83 (Mitte) und 85 (rechts).
In der Tat konnten in sehr guten Ausbeuten O,O′-gebundene [(p-cym)Ru]-, [(Phpy)2Ir]-
und [(Cp*)Ir]-Komplexe ausgewählter redoxaktiver ortho-chinoider Liganden dargestellt
werden. Vorteilhaft war die Verwendung der kristallinen, nicht-flüchtigen Base TlOtBu zum
Abfangen der im Zuge der Komplexierung freiwerdenden Protonen (Schema 49, Abb. 37).
Die Eliminierung von TlCl sorgt für eine irreversible Reaktion zu den entsprechenden
Zusammenfassung
74
Komplexen. Besonders interessant ist die Koordinationschemie des Liganden 68 im chiralen,
anionischen IrIII-Komplex 83 (Abb. 37 Mitte), der in der Synthese als Thallium-Salz anfiel
und im Festkörper TlI-verbrückte Dimere bildete.
Eine elektrochemische Charakterisierung wurde mit 85 durchgeführt. Wie erwartet, zeigte
der komplexierte Bis(dimethylpyrazol-1-yl)methan-Ligand im Gegensatz zu freiem 68 eine
reversible Oxidationswelle. Die Potentialdifferenz zwischen Liganden-Oxidation und Iridium-
Reduktion beträgt fast 2 V, was in diesem Zusammenhang bedeutet, dass sich 68 als
unschuldiger Ligand verhält und man Iridium zweifelsfrei die Oxidationsstufe +III zuweisen
kann. Mit Komplexen von 68 und leichter reduzierbaren Übergangsmetallen sollte es
hingegen möglich sein, in den Bereich des nicht-unschuldigen Verhaltens vorzudringen und
z.B. Valenz-Tautomerie zu beobachten.
Mit effizienten Synthesewegen zu N,N′-Komplexen einerseits (74 und 75; Abb. 36) und
O,O′-Komplexen andererseits (u.a. 83 und 85; Abb. 37) wurde als nächstes ein heterodinuklearer
Komplex synthetisiert (87; Schema 50). 68 erwies sich als am besten geeigneter
Ligand, da er, wie bereits erwähnt, eine gute Löslichkeit bei moderatem sterischen Anspruch
besitzt und der N,N′-Donor auch in Gegenwart von Lewis-sauren Metallionen beständig ist.
Die Wannenform des Bis(pyrazol-1-yl)methan-PdII-Chelatrings in 87 bringt das Palladium-
Ion in räumliche Nähe zum ortho-Hydrochinonat π-System. In früheren Studien dieser
Arbeitsgruppe konnte gezeigt werden, dass ein solches Arrangement Elektronenübertragungen
zwischen dem Chinon und dem koordinierten Palladium-Zentrum erlaubt.
Durch die direkte konjugative Wechselwirkung des zweiten Metallzentrums (IrIII) mit der
redoxaktiven Gruppe über die Sauerstoffatome in 87 sollte eine effektive elektronische
Ligand ↔ Metall- und Metall ↔ Metall-Kommunikation möglich sein. Die elektrochemische
Charakterisierung zeigte allerdings, dass im vorliegenden Fall die Potentiale der drei
Komponenten Chinon / PdII / IrIII mit jeweils ca. einem Volt zu weit auseinander liegen.
Schema 50: Synthese eines hetero-dinuklearen IrIII/PdII-Komplexes.
Im letzten Teilgebiet dieser Arbeit wurde die Eignung der ortho-chinoiden Liganden 67
und 70 für den Aufbau höhermolekularer Koordinationsverbindungen und oligonuklearer
Aggregate untersucht.
Zusammenfassung
75
Schema 51: Synthese der oktaedrischen Komplexliganden 89 – 96.
Dafür wurden Komplexliganden synthetisiert, die aus einem Zentralmetall bestehen, das
oktaedrisch von je drei O,O′-koordinierenden Liganden 67 bzw. 70 umgeben ist (Schema 51).
Mit den freien Bis(pyrazol-1-yl)methan-Donorgruppen vermag jeder dieser Komplexliganden
drei weitere Metallzentren zu koordinieren. Derartige Verbindungen könnten aufgrund ihrer
dreidimensionalen Struktur z.B. Anwendung im Aufbau von redoxaktiven metallorganischen
Netzwerken oder elektrisch leitfähigen Koordinationspolymeren finden. Als Zentralmetalle
dienten FeIII- und AlIII-Ionen; erstere, weil sie selbst redoxaktiv sind, und letztere, weil sie
eine im Vergleich zu FeIII ähnliche Koordinationschemie besitzen, aber wegen ihres
Diamagnetismus‘ eine NMR-spektroskopische Charakterisierung ermöglichen. Je nach
verwendeter Base wurden die dreifach anionischen Komplexliganden als Lithium- bzw.
Thallium-Salze isoliert. Die NMR-Spektren von 89, 90, 93 und 94 zeigten jeweils nur einen
Signalsatz, obwohl sich, bedingt durch die Asymmetrie des Liganden und die Chiralität des
oktaedrischen Metallzentrums, fac- und mer-Isomere bilden können. Es konnte nicht
abschließend geklärt werden, ob sich exklusiv das höhersymmetrische fac-Isomer bildet, oder
ob ein Mechanismus aktiv ist, der alle Isomere auf der NMR-Zeitskala schnell ineinander
überführt, sodass die Gegenwart lediglich einer Spezies vorgetäuscht wird. In
elektrochemischen Untersuchungen zeigten die Komplexliganden mehrere irreversible
Oxidationswellen. Ob dieses Verhalten auf eine intramolekulare Kommunikation der
einzelnen redoxaktiven Gruppen zurückzuführen ist, müssen weitergehende Studien zeigen.
Als prinzipieller Beleg für die präparative Anwendbarkeit der Komplexliganden und
Grundlage für die Untersuchung der Koordinationschemie der oktaedrischen
Komplexliganden, wurden PdII-Komplexe von 89 und 93 synthetisiert.