Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Pharmazie (2)
Pharmakologische Charakterisierung zentraler cholinerger Dysfunktionen in transgenen Mausmodellen
(2013)
Die cholinerge Dysfunktion steht in Zusammenhang mit der Ätiologie der Alzheimer-Krankheit (AD). Das Absterben cholinerger Neurone führt zu einer verminderten cholinergen Neurotransmission im Gehirn. Die Abnahme der Acetylcholinesterase-(AChE)-Aktivität und eine leichte Zunahme der Butyrylcholinesterase-(BChE)-Aktivität zählen zu den charakteristischen Merkmalen der AD. Acetylcholinesterase-Inhibitoren (AChEI) sollen Acetylcholin (ACh)-Konzentrationen im Gehirn steigern, um cholinerge Defizite auszugleichen. Allerdings zeigen AChEI in der Klinik nur einen mäßigen Erfolg. Zur Optimierung der Therapie mit Esterasehemmern, wurden im Rahmen dieser Arbeit drei transgene Mausmodelle mit cholinergen Veränderungen untersucht.
Zunächst wurde die AChE-heterozygote (AChE +/-) Maus analysiert. Die Maus weist bei einer 60-prozentigen AChE-Restaktivität (60,6 U/mg in AChE +/- versus 100,0 U/mg in WT-Mäusen) nur sehr leicht erhöhte ACh-Konzentrationen im Gehirn (9,0±5,1 fmol/5 µl in AChE+/- versus 5,0±3,6 fmol/5 µl in der WT-Maus) auf, die mithilfe der in vivo Mikrodialyse bestimmt wurden. PET-Studien haben gezeigt, dass die zerebrale AChE-Restaktivität in AD-Patienten, die mit Donepezil behandelt wurden, immer noch 70 bis 90% beträgt. Vom AChE +/- Modell kann abgeleitet werden, dass eine bis zu 50-prozentige AChE-Hemmung durch AChEI nicht genügt, um ACh-Konzentrationen im Gehirn von Patienten deutlich zu erhöhen. Leider ist eine Dosiserhöhung der AChEI durch das Auftreten von unerwünschten Wirkungen (Diarrhö, Übelkeit, Erbrechen) begrenzt.
Hippocampale ACh-Konzentrationen in der AChE +/- Maus steigen nach intrazerebraler und intraperitonealer Gabe von selektiven AChEI signifikant stärker an als in WT Mäusen. AChEI können ACh-Konzentrationen also auch noch bei einer verminderten AChE-Aktivität steigern. Die Cholinacetyltransferase-Aktivität ist in AChE +/- Mäusen unverändert, während der hochaffine Cholintransport signifikant um 58% erhöht ist. Veränderungen der kognitiven Leistungsfähigkeit der AChE +/- Maus sind in Verhaltenstests nicht zu erkennen. Es folgte die Untersuchung der PRiMA (Prolin-reicher Membrananker) defizienten Maus und der AChE del5 6-Maus. PRiMA ist ein transmembranäres Protein, das zur Prozessierung der AChE und ihrer Verankerung in der Membran verantwortlich ist. PRiMA kommt hauptsächlich im Gehirn vor, daher kann die PRiMA-KO-Maus dort keine AChE-Verankerung ausbilden. Die AChEdel5 6-Maus kann weder im Gehirn noch in der Peripherie AChE-Verankerungen formen, da eine Domäne fehlt, die essentiell für die Wechselwirkung mit Anker-Proteinen ist. Beide Mausmodelle weisen geringe AChE-Restaktivitäten (< 10 %) und drastisch erhöhte ACh-Konzentrationen im Gehirn auf. Die ACh-Konzentrationen im Striatum der PRiMA-KO-Maus sind circa 350 fach erhöht (4±3 fmol/5 µl in WT-Mäusen versus 1450±700 fmol/5 µl in PRiMA-KO-Mäusen). Allerdings zeigt die PRiMA-KO-Maus keinen Phänotyp, während die AChE del5 6 Maus krank aussieht (Tremor, geringes Körpergewicht, stumpfes Fell). Beide Modelle bestätigen, dass ACh-Spiegel im Gehirn nur dann stark ansteigen, wenn die AChE immens gehemmt ist. Ferner kann aus der PRIMA-KO-Maus gefolgert werden, dass die Interaktion zwischen AChE und PRiMA ein geeignetes Target für die Therapie der cholinergen Dysfunktion darstellen könnte.
Nach intrazerebraler Applikation eines selektiven AChE-Inhibitors (BW284c51 1 µM), steigen die ACh-Spiegel im Gehirn beider transgener Mäuse signifikant an. Eine Veränderung der ACh-Konzentrationen nach BChEI Gabe ist weder bei der AChE +/-, der PRiMA-KO, noch bei der AChE del5 6 Maus zu sehen. Die BChE trägt bei einer AChE-Restaktivität (10 bis 40 %) nicht zum hydrolytischen Abbau von ACh bei. Daraus lässt sich ableiten, dass bei stark verminderten AChE-Aktivitäten, der Einsatz von BChEI vermutlich keinen weiteren Nutzen erbringt. Um die Adaptionsmechanismen der PRiMA-KO-Maus aufzuklären, wurde die M2-Rezeptor Funktion (negativer Feedback-Mechanismus) getestet. Da die striatalen ACh-Konzentrationen in der PRiMA-KO-Maus nach Behandlung (lokal und i.p.) mit M2-Agonisten und -Antagonisten kaum verändert sind, lässt dies einen nicht-funktionalen M2 vermuten.
Aus den Ergebnissen können wichtige Erkenntnisse über die Therapie der Alzheimer-Krankheit gewonnen werden. Die Bestimmung der ACh-Konzentrationen, in Gegenwart unterschiedlicher AChE-Aktivitäten der verschiedenen Mausmodelle, zeigt den Zusammenhang zwischen ACh und AChE im Säugerhirn und erklärt die limitierte klinische Wirksamkeit der AChE-Inhibitoren. Die Hemmung der Interaktion zwischen PRiMA und der AChE stellt eine denkbare Interventionsmöglichkeit dar, um ACh-Konzentrationen im Gehirn zu steigern, ohne dabei periphere Nebenwirkungen auszulösen. Ziel der weiteren Forschung sollte sein, PRiMA bzw. die Interaktion zwischen PRiMA und AChE als Target für die Therapie der Alzheimer-Krankheit weiter zu erforschen.
The muscarinic M2 receptor (M2R) acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh) release, especially when ACh levels are increased because acetylcholinesterase (AChE) activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia.