Refine
Document Type
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
- Physik (2)
We analyze general convergence properties of the Taylor expansion of observables to finite chemical potential in the framework of an effective 2+1 flavor Polyakov-quark-meson model. To compute the required higher order coefficients a novel technique based on algorithmic differentiation has been developed. Results for thermodynamic observables as well as the phase structure obtained through the series expansion up to 24th order are compared to the full model solution at finite chemical potential. The available higher order coefficients also allow for resummations, e.g. Padé series, which improve the convergence behavior. In view of our results we discuss the prospects for locating the QCD phase boundary and a possible critical endpoint with the Taylor expansion method.
Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.