Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- biodiversity protection (2)
- conservation funding (2)
- conservation planning (2)
- decision making (2)
- global change (2)
- post-2020 biodiversity targets (2)
- strategic site selection (2)
- axions (1)
- dark matter experiments (1)
- long-term protection (1)
Institute
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axiorecombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength ga using the CAST phase-I data (vacuum phase). For ma <~ 10 meV/c2 we find ga gae < 8.1 × 10−23 GeV−1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.
The establishment and maintenance of protected areas (PAs) is viewed as a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting protected areas based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences, as well as real-time comparison of the selected areas that result from such different priorities. We apply the tool across 1347 terrestrial PAs and highlight frequent trade-offs among different objectives, e.g., between species protection and ecosystem integrity. Outputs indicate that decision makers frequently face trade-offs among conflicting objectives. Nevertheless, we show that transparent decision-support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.
The establishment and maintenance of protected areas(PAs) is viewed as a key action in delivering post-2020 biodiversity targets. PAs often need to meet a multitude of objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation. As available land and conservation funding are limited, optimizing resources by selecting the most beneficial PAs is vital. Here we present a decision support tool that enables a flexible approach to PA selection on a global scale, allowing different conservation objectives to be weighted and prioritized according to user-specified preferences. We apply the tool across 1347 terrestrial PAs and highlight frequent trade-offs among different objectives, e.g., between biodiversity protection and ecosystem integrity. These results indicate that decision makers must usually decide among conflicting objectives. To assist this our decision support tool provides an explicitly value-based approach that can help resolve such conflicts by considering divergent societal and political demands and values.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Establishing and maintaining protected areas (PAs) is a key action in delivering post-2020 biodiversity targets. PAs often need to meet multiple objectives, ranging from biodiversity protection to ecosystem service provision and climate change mitigation, but available land and conservation funding is limited. Therefore, optimizing resources by selecting the most beneficial PAs is vital. Here, we advocate for a flexible and transparent approach to selecting PAs based on multiple objectives, and illustrate this with a decision support tool on a global scale. The tool allows weighting and prioritization of different conservation objectives according to user-specified preferences as well as real-time comparison of the outcome. Applying the tool across 1,346 terrestrial PAs, we demonstrate that decision makers frequently face trade-offs among conflicting objectives, e.g., between species protection and ecosystem integrity. Nevertheless, we show that transparent decision support tools can reveal synergies and trade-offs associated with PA selection, thereby helping to illuminate and resolve land-use conflicts embedded in divergent societal and political demands and values.