Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Genetics (1)
- Genome-wide association studies (1)
- SARS-CoV-2 (1)
- Viral infection (1)
Proton emission in relativistic nuclear collisions is examined for events of low and high multiplicity, corresponding to large and small impact parameters. Peripheral reactions exhibit distributions of protons in agreement with spectator-participant decay modes. Central collisions of equal-size nuclei are dominated by the formation and decay of a fireball system. Central collisions of light projectiles with heavy targets exhibit an enhancement in sideward emission which is predicted by recent hydrodynamical calculations.
Inclusive energy spectra of protons, deuterons, and tritons were measured with a telescope of silicon and germanium detectors with a detection range for proton energies up to 200 MeV. Fifteen sets of data were taken using projectiles ranging from protons to 40Ar on targets from 27Al to 238U at bombarding energies from 240 MeV/nucleon to 2.1 GeV/nucleon. Particular attention was paid to the absolute normalization of the cross sections. For three previously reported reactions, He fragment cross sections have been corrected and are presented. To facilitate a comparison with theory the sum of nucleonic charges emitted as protons plus composite particles was estimated and is presented as a function of fragment energy per nucleon in the interval from 15 to 200 MeV/nucleon. For low-energy fragments at forward angles the protons account for only 25% of the nucleonic charges. The equal mass 40Ar plus Ca systems were examined in the center of mass. Here at 0.4 GeV/nucleon 40Ar plus Ca the proton spectra appear to be nearly isotropic in the center of mass over the region measured. Comparisons of some data with firestreak, cascade, and fluid dynamics models indicate a failure of the first and a fair agreement with the latter two. In addition, associated fast charged particle multiplicities (where the particles had energies larger than 25 MeV/nucleon) and azimuthal correlations were measured with an 80 counter array of plastic scintillators. It was found that the associated multiplicities were a smooth function of the total kinetic energy of the projectile. NUCLEAR REACTIONS U(20Ne,X), E / A=240 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), Au(20Ne,X), Ag(20Ne,X), Al(20Ne,X), U(4He,X), Al(4He,X), E / A=390 MeV/nucleon; U(40Ar,X), Ca(40Ar,X), U(20Ne,X), U(4He,X), U(p,X), E / A=1.04 GeV/nucleon; U(20Ne,X), E / A=2.1 GeV/nucleon; measured sigma (E, theta ), X=p,d,t.
Pion-production cross sections have been measured for the reaction 40Ar+40Ca--> pi ++X at a laboratory energy of 1.05 GeV/nucleon. A maximum in the pi + cross section occurs at mid-rapidity, which is anomalous relative to p+p and p+nucleus reactions and compared to many other heavy-ion reactions. Calculations based on cascade and thermal models fail to fit the data.
Pion production and charged-particle multiplicity selection in relativistic nuclear collisions
(1982)
Spectra of positive pions with energies of 15-95 MeV were measured for high energy proton, 4He, 20Ne, and 40Ar bombardments of targets of 27Al, 40Ca, 107,109Ag, 197Au, and 238U. A Si-Ge telescope was used to identify charged pions by dE / dx-E and, in addition, stopped pi + were tagged by the subsequent muon decay. In all, results for 14 target-projectile combinations are presented to study the dependence of pion emission patterns on the bombarding energy (from E / A=0.25 to 2.1 GeV) and on the target and the projectile masses. In addition, associated charged-particle multiplicities were measured in an 80-paddle array of plastic scintillators, and used to make impact parameter selections on the pion-inclusive data. NUCLEAR REACTIONS U(20Ne, pi +), E / A=250 MeV; U(40Ar, pi +), Ca(40Ar, pi +), U(20Ne, pi +), Au(20Ne, pi +), Ag(20Ne, pi +), Al(20Ne, pi +), U(4He, pi +), Al(4He, pi +). E / A=400 MeV; Ca(40Ar, pi +), U(20Ne, pi +), U(4He, pi +), U(p, pi +), E / A=1.05), GeV; U(20Ne, pi +), E / A=2.1 GeV; measured sigma (E, theta ), inclusive and selected on associated charged-particle multiplicity.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.