Refine
Year of publication
Document Type
- Preprint (26)
- Article (14)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (42)
Has Fulltext
- yes (42)
Is part of the Bibliography
- no (42)
Keywords
- Charge fluctuations (1)
- QGP (1)
- Relativistic heavy-ion collisions (1)
Institute
Measurements of the π±, K±, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential π± yields were measured with increased precision compared to the previously published NA61/SHINE results, while the K± and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.
We present measurements of ρ0, ω and K∗0 spectra in π−+ C production interactions at 158 GeV / c and ρ0 spectra at 350 GeV / c using the NA61/SHINE spectrometer at the CERN SPS. Spectra are presented as a function of the Feynman’s variable xF in the range 0<xF<1 and 0<xF<0.5 for 158 and 350 GeV / c respectively. Furthermore, we show comparisons with previous measurements and predictions of several hadronic interaction models. These measurements are essential for a better understanding of hadronic shower development and for improving the modeling of cosmic ray air showers.
his Erratum replaces incorrect plots shown in Fig. 7 with the corrected ones. In the publication, the NA57 [1] ratios of Ξ− and Ξ¯¯¯¯+ to the number of wounded nucleons at ⟨NW⟩=349 by mistake were plotted at the wrong values. The ratios were calculated and plotted by mistake using ⟨NW⟩=249.
The correct normalization does not change the conclusions of the paper. The correctly normalized results are presented in Fig. 7.
The production of Ξ(1321)− and Ξ¯¯¯¯(1321)+ hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV/c. Double differential distributions in rapidity y and transverse momentum pT are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both Ξ− and Ξ¯¯¯¯+. The rapidity and transverse momentum spectra are compared to transport model predictions. The Ξ− mean multiplicity in inelastic p+p interactions at 158 GeV/c is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair.
The physics goal of the strong interaction program of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) is to study the phase diagram of hadronic matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents differential inclusive spectra of transverse momentum, transverse mass and rapidity of π− mesons produced in central 40Ar+45Sc collisions at beam momenta of 13A, 19A, 30A, 40A, 75A and 150A Ge V /c. Energy and system size dependence of parameters of these distributions – mean transverse mass, the inverse slope parameter of transverse mass spectra, width of the rapidity distribution and mean multiplicity – are presented and discussed. Furthermore, the dependence of the ratio of the mean number of produced pions to the mean number of wounded nucleons on the collision energy was derived. The results are compared to predictions of several models.
A measurement of charged hadron pair correlations in two-dimensional ηφ space is presented. The analysis is based on total 30 million central Be + Be collisions observed in the NA61/SHINE detector at the CERN SPS for incident beam momenta of 19A, 30A, 40A, 75A, and 150A GeV/c. Measurements were carried out for unlike-sign and like-sign charge hadron pairs independently. The C(η, φ) correlation functions were compared with results from a similar analysis on p + p interactions at similar beam momenta per nucleon. General trends of the backto-back correlations are similar in central Be + Be collisions and p + p interactions, but are suppressed in magnitude due to the increased combinatorial background. Predictions from the Epos and UrQMD models are compared to the measurements. Evolution of an enhancement around (η, φ) = (0, 0) with incident energy is observed in central Be + Be collisions. It is not predicted by both models and almost non-existing in proton–proton collisions at the same momentum per nucleon.
Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and two particle spectra are analysed separately. The source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.
We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.
The directed and elliptic flow of protons and charged pions has been observed from the semi-central collisions of a 158 GeV/nucleon Pb beam with a Pb target. The rapidity and transverse momentum dependence of the flow has been measured. The directed flow of the pions is opposite to that of the protons but both exhibit negative flow at low pt. The elliptic flow of both is fairly independent of rapidity but rises with pt. PACS numbers: 25.75.-q, 25.75.Ld
Using the NA49 main TPC, the central production of hyperons has been measured in CERN SPS Pb - Pb collisions at 158 GeV c-1. The preliminary ratio, studied at 2.0 < y < 2.6 and 1 < pT < 3 GeV c-1, equals ~ (13 ± 4)% (systematic error only). It is compatible, within errors, with the previously obtained ratios for central S + S [1], S + W [2], and S + Au [3] collisions. The fit to the transverse momentum distribution resulted in an inverse slope parameter T of 297 MeV. At this level of statistics we do not see any noticeable enhancement of hyperon production with the increased volume (and, possibly, degree of equilibration) of the system from S + S to Pb + Pb. This result is unexpected and counterintuitive, and should be further investigated. If confirmed, it will have a significant impact on our understanding of mechanisms leading to the enhanced strangeness production in heavy-ion collisions.