Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Calosoma sycophanta (1)
- Endoreticulatus (1)
- Lymantria dispar (1)
- Mikrosporidien (1)
- Parasetigena silvestris (1)
- Parsitoide (1)
- Predatoren (1)
- Thaumetopoea processionea (1)
- inoculative release (1)
- inokulative Freilassung (1)
Since the late 1990s, the oak processionary moth, Thaumetopoea processionea (L.), has been occurring at high population densities in eastern Austria. Particularly, infestations in areas of human settlement have created increasing interest in this insect due to health problems caused by the urticating hairs of the larvae. New methods for biological control are desirable. Like essentially all forest Lepidoptera, T. processionea is host for entomopathogenic microsporidia. These obligatory parasitic protists have been evaluated as biocontrol agents against an other oak pest, Lymantria dispar (Weiser & Novotny, 1987; Jeffords & al., 1988). Life history traits of T. processionea make this insect an even more promising target for the use of microsporidia. The larvae are highly gregarious and stay together in nests made of larval silk for resting periods and molting. Microsporidia utilize several pathways for horizontal transmission that would be aided by these features: spores can be released after host death from cadavers as well as from living larvae via silk or feces. Additionally, many microsporidia are vertically transmitted (summarized in Maddox & al., 1998). In this project, T. processionea larvae from various regions in eastern Austria were screened for the natural occurrence of microsporidia. One isolate, Endoreticulatus sp., was further studied and mass produced in a laboratory host, L. dispar, that is easy to rear and does not pose a health hazard for people working with the insects. An inoculative release was attempted on isolated trees infested with T. processionea.
We have been surveying a gypsy moth, Lymantria dispar (Lep., Lymantriidae), population in the oak forest of Klingenbach near Eisenstadt, Austria, since 1992. During the last gradation from 1993 to 1996, we studied the natural enemy complex at this site in comparison with other locations where no outbreak occurred (HOCH et al. 2001). During the latency years, an experimental study on the impact of predators on L. dispar pupal populations was performed (GSCHWANTNER et al. 2002). The population density was recorded regularly; in the winter 2001/02, the egg mass surveys indicated a rising population after seven years of latency. We used this opportunity to study the parasitoid complex in the progradation phase. This phase of gypsy moth population dynamics was not studied in our previous work. Moreover, it allowed us to repeat the investigation during the outbreak after 11 years.