Refine
Year of publication
Document Type
- Article (21)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Azacitidine (2)
- HSCT (2)
- acute myeloid leukaemia (2)
- chemotherapy (2)
- 32D progenitor cells (1)
- AML (1)
- ASCT (1)
- Acute myeloid leukaemia (1)
- Acute myeloid leukemia (1)
- Allogeneic hematopoietic stem cell transplantation (1)
Institute
- Medizin (21)
- Pharmazie (1)
- Sonderforschungsbereiche / Forschungskollegs (1)
Objectives: To describe changes in costs of managing hospitalised patients with acute myeloid leukaemia (AML) after chemotherapy in Germany over 3 yr, with a special focus on prophylaxis and treatment patterns as well as resource use related to invasive fungal infections (IFI).
Methods: The study was conducted as a retrospective, single-centre chart review in patients with AML hospitalised for chemotherapy, neutropenia and infections after myelosuppressive chemotherapy from January 2004 to December 2006 in Germany. The following resource utilisation data were collected: inpatient stay, mechanical ventilation, parenteral feeding, diagnostics, systemic antifungal medication and cost-intensive concomitant medication. Direct medical costs were calculated from hospital provider perspective.
Results: A total of 471 episodes in 212 patients were included in the analysis. Occurrence of IFI decreased from 5.9% in 2004 to 1.9% in 2006. Mean (± standard deviation) hospital stay decreased from 28.7 ± 17.9 d in 2004 to 22.4 ± 11.8 d in 2006. From 2004 to 2006, the use of a single antifungal drug increased from 30.4% to 46.9%, whereas the use of multiple antifungal drugs decreased from 24.4% to 13.1%. The use of liposomal amphotericin B declined between 2004 and 2006 (21.4% vs. 3.8%) and caspofungin between 2005 and 2006 (19.3% vs. 8.1%). Total costs per episode declined from €19051 ± 19024 in 2004 to €13531 ± 9260 in 2006; major reductions were observed in the use of antimycotics and blood products as well as length of hospital stay.
Conclusion: Analysis of real-life data from one single centre in Germany demonstrated a change in antifungal management of patients with AML between 2004/2005 and 2006, accompanied by a decline in total costs.
Acute myeloid leukemia (AML) is characterized by an aberrant self-renewal of hematopoietic stem cells (HSC) and a block in differentiation. The major therapeutic challenge is the characterization of the leukemic stem cell as a target for the eradication of the disease. Until now the biology of AML-associated fusion proteins (AAFPs), such as the t(15;17)-PML/RARα, t(8;21)-RUNX1/RUNX1T1 and t(6;9)-DEK/NUP214, all able to induce AML in mice, was investigated in different models and genetic backgrounds, not directly comparable to each other. To avoid the bias of different techniques and models we expressed these three AML-inducing oncogenes in an identical genetic background and compared their influence on the HSC compartment in vitro and in vivo.
These AAFPs exerted differential effects on HSCs and PML/RARα, similar to DEK/NUP214, induced a leukemic phenotype from a small subpopulation of HSCs with a surface marker pattern of long-term HSC and characterized by activated STAT3 and 5. In contrast the established AML occurred from mature populations in the bone marrow. The activation of STAT5 by PML/RARα and DEK/NUP214 was confirmed in t(15;17)(PML/RARα) and t(6;9)(DEK/NUP214)-positive patients as compared to normal CD34+ cells. The activation of STAT5 was reduced upon the exposure to Arsenic which was accompanied by apoptosis in both PML/RARα- and DEK/NUP214-positive leukemic cells. These findings indicate that in AML the activation of STATs plays a decisive role in the biology of the leukemic stem cell. Furthermore we establish exposure to arsenic as a novel concept for the treatment of this high risk t(6;9)-positive AML.
Rho GTPases are involved in homing and mobilization of hematopoietic stem and progenitor cells due to their impact on cytoskeleton remodeling. We have previously shown that inhibition of Rho, Rac and Cdc42 clearly impairs adhesion of normal and leukemic hematopoietic progenitor cells (HPC) to fibronectin and migration in a three-dimensional stromal cell model. Here, we identified the Ras GTPase-Activating Protein SH3 Domain-Binding Protein (G3BP) as a target gene of Rho GTPases and analysed its role in regulating HPC motility. Overexpression of G3BP significantly enhanced adhesion of murine 32D HPC to fibronectin and human umbilical vein endothelial cells, increased the proportion of adherent cells in a flow chamber assay and promoted cell migration in a transwell assay and a three-dimensional stromal cell model suggesting a strong impact on the cytoskeleton. Immunofluorescent staining of G3BP-overexpressing fibroblasts revealed a Rho-like phenotype characterized by formation of actin stress fibers in contrast to the Rac-like phenotype of control fibroblasts. This is the first report implicating a role for G3BP in Rho GTPase-mediated signalling towards adhesion and migration of HPC. Our results may be of clinical importance, since G3BP was found overexpressed in human cancers.
Purpose: Total body irradiation (TBI) is a common part of the myelo- and immuno-ablative conditioning regimen prior to an allogeneic hematopoietic stem cell transplantation (allo-HSCT). Due to concerns regarding acute and long-term complications, there is currently a decline in otherwise successfully established TBI-based conditioning regimens. Here we present an analysis of patient and treatment data with focus on survival and long-term toxicity.
Methods: Patients with hematologic diseases who received TBI as part of their conditioning regimen prior to allo-HSCT at Frankfurt University Hospital between 1997 and 2015 were identified and retrospectively analyzed.
Results: In all, 285 patients with a median age of 45 years were identified. Median radiotherapy dose applied was 10.5 Gy. Overall survival at 1, 2, 5, and 10 years was 72.6, 64.6, 54.4, and 51.6%, respectively. Median follow-up of patients alive was 102 months. The cumulative incidence of secondary malignancies was 12.3% (n = 35), with hematologic malignancies and skin cancer predominating. A TBI dose ≥ 8 Gy resulted in significantly improved event-free (p = 0.030) and overall survival (p = 0.025), whereas a total dose ≤ 8 Gy and acute myeloid leukemia (AML) diagnosis were associated with significantly increased rates of secondary malignancies (p = 0.003, p = 0.048) in univariate analysis. No significant correlation was observed between impaired renal or pulmonary function and TBI dose.
Conclusion: TBI remains an effective and well-established treatment, associated with distinct late-toxicity. However, in the present study we cannot confirm a dose–response relationship in intermediate dose ranges. Survival, occurrence of secondary malignancies, and late toxicities appear to be subject to substantial confounding in this context.
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Background: Cytogenetic aberrations such as deletion of chromosome 5q (del(5q)) represent key elements in routine clinical diagnostics of haematological malignancies. Currently established methods such as metaphase cytogenetics, FISH or array-based approaches have limitations due to their dependency on viable cells, high costs or semi-quantitative nature. Importantly, they cannot be used on low abundance DNA. We therefore aimed to establish a robust and quantitative technique that overcomes these shortcomings.
Methods: For precise determination of del(5q) cell fractions, we developed an inexpensive multiplex-PCR assay requiring only nanograms of DNA that simultaneously measures allelic imbalances of 12 independent short tandem repeat markers.
Results: Application of this method to n=1142 samples from n=260 individuals revealed strong intermarker concordance (R²=0.77–0.97) and reproducibility (mean SD: 1.7%). Notably, the assay showed accurate quantification via standard curve assessment (R²>0.99) and high concordance with paired FISH measurements (R²=0.92) even with subnanogram amounts of DNA. Moreover, cytogenetic response was reliably confirmed in del(5q) patients with myelodysplastic syndromes treated with lenalidomide. While the assay demonstrated good diagnostic accuracy in receiver operating characteristic analysis (area under the curve: 0.97), we further observed robust correlation between bone marrow and peripheral blood samples (R²=0.79), suggesting its potential suitability for less-invasive clonal monitoring.
Conclusions: In conclusion, we present an adaptable tool for quantification of chromosomal aberrations, particularly in problematic samples, which should be easily applicable to further tumour entities.
Treatment of relapse after allogeneic hematopoietic stem cell transplantation (alloHSCT) remains a great challenge. Aiming to evaluate the combination of venetoclax and hypomethylating agents (HMAClax) for the treatment of relapse of myeloid malignancies after alloHSCT, we retrospectively collected data from 32 patients treated at 11 German centers. Venetoclax was applied with azacitidine (n = 13) or decitabine (n = 19); 11 patients received DLI in addition. HMAClax was the first salvage therapy in 8 patients. The median number of cycles per patient was 2 (1–19). All but 1 patient had grade 3/4 neutropenia. Hospital admission for grade 3/4 infections was necessary in 23 patients (72%); 5 of these were fatal. In 30 evaluable patients, overall response rate (ORR) was 47% (14/30, 3 CR MRDneg, 5 CR, 2 CRi, 1 MLFS, 3 PR). ORR was 86% in first salvage patients versus 35% in later salvage patients (p = 0.03). In 6 patients with molecular relapse (MR), ORR was 67% versus 42% in patients with hematological relapse (HR) (n = 24, p = n.s.). After a median follow-up of 8.4 months, 25 patients (78%) had died and 7 were alive. Estimated median overall survival was 3.7 months. Median survival of patients with HMAClax for first versus later salvage therapy was 5.7 and 3.4 months (p = n.s.) and for patients with MR (not reached) compared to HR (3.4 months, p = 0.024). This retrospective case series shows that venetoclax is utilized in various different combinations, schedules, and doses. Toxicity is substantial and patients who receive venetoclax/HMA combinations for MR or as first salvage therapy derive the greatest benefit.
Maintenance therapy after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) is conceptually attractive to prevent relapse, but has been hampered by the limited number of suitable anti-leukemic agents. The deacetylase inhibitor (DACi) panobinostat demonstrated moderate anti-leukemic activity in a small subset of patients with advanced AML and high-risk MDS in phase I/II trials.1, 2 It also displays immunomodulatory activity3 that may enhance leukemia-specific cytotoxicity4 and mitigate graft versus host disease (GvHD), but conversely could impair T- and NK cell function.5, 6 We conducted this open-label, multi-center phase I/II trial (NCT01451268) to assess the feasibility and preliminary efficacy of prolonged prophylactic administration of panobinostat after HSCT for AML or MDS. The study protocol was approved by an independent ethics committee and conducted in compliance with the Declaration of Helsinki. All patients provided written informed consent. ...
INTRODUCTION: Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML.
TRIAL DESIGN: Prospective, randomised, open, phase II trial with parallel group design and fixed sample size.
PATIENTS AND METHODS: Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of <20,000/µl at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint.
RESULTS: Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days.
CONCLUSIONS: The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) offers potential cure to acute myeloid leukemia (AML) patients. However, infections with commensal bacteria are an important cause for non-relapse mortality (NRM). We have previously described the impact of multidrug-resistant organism (MDRO) colonization on the survival of allo-HSCT patients. In the aforementioned publication, according to consensus, we there did not consider the opportunistic gram-negative bacterium Stenotrophomonas maltophilia (S. maltophilia) to be an MDRO. Since rate of S. maltophilia colonization is increasing, and it is not known whether this poses a risk for allo-HSCT patients, we here analyzed here its effect on the previously described and now extended patient cohort. We report on 291 AML patients undergoing allo-HSCT. Twenty of 291 patients (6.9%) were colonized with S. maltophilia. Colonized patients did not differ from non-colonized patients with respect to their age, remission status before allo-HSCT, donor type and HSCT-comorbidity index. S. maltophilia colonized patients had a worse overall survival (OS) from 6 months up to 60 months (85% vs. 88.1% and 24.7% vs. 59.7%; p = 0.007) due to a higher NRM after allo-HSCT (6 months: 15% vs. 4.8% and 60 months: 40.1% vs. 16.2% p = 0.003). The main cause of mortality in colonized patients was infection (46.2% of all deaths) and in non-colonized patients relapse (58.8% of all deaths). 5/20 colonized patients developed an invasive infection with S. maltophilia. The worse OS after allo-HSCT due to higher infection related mortality might implicate the screening of allo-HSCT patients for S. maltophilia and a closer observation of colonized patients as outpatients.