Refine
Year of publication
Document Type
- Article (32)
Has Fulltext
- yes (32)
Is part of the Bibliography
- no (32)
Keywords
- Virtual Screening (2)
- AF4–MLL (1)
- Compound Database (1)
- Gaussian Process (1)
- Identical Topology (1)
- Lead Structure (1)
- Multiple Kernel (1)
- Oncoprotein activation (1)
- Pairwise Sequence Alignment (1)
- Support Vector Regression (1)
Shape complementarity is a compulsory condition for molecular recognition. In our 3D ligand-based virtual screening approach called SQUIRREL, we combine shape-based rigid body alignment with fuzzy pharmacophore scoring. Retrospective validation studies demonstrate the superiority of methods which combine both shape and pharmacophore information on the family of peroxisome proliferator-activated receptors (PPARs). We demonstrate the real-life applicability of SQUIRREL by a prospective virtual screening study, where a potent PPARalpha agonist with an EC50 of 44 nM and 100-fold selectivity against PPARgamma has been identified...
Background: The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings: We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance: This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection.
Spherical harmonics coeffcients for ligand-based virtual screening of cyclooxygenase inhibitors
(2011)
Background: Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. Methodology/Principal Findings: We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. Conclusions/Significance: 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.
Background: Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway (‘‘effector proteins’’) have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. Methodology/Principal Findings: In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). Conclusions/Significance: We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server ( www.modlab.org ).
We developed the Pharmacophore Alignment Search Tool (PhAST), a text-based technique for rapid hit and lead structure searching in large compound databases. For each molecule, a two-dimensional graph of potential pharmacophoric points (PPPs) is created, which has an identical topology as the original molecule with implicit hydrogen atoms. Each vertex is coloured by a symbol representing the corresponding PPP. The vertices of the graph are canonically labelled. The symbols associated with the vertices are combined to a so-called PhAST-Sequence beginning with the vertex with the lowest canonical label. Due to the canonical labelling the created PhAST-Sequence is characteristic for each molecule. For similarity assessment, PhAST-Sequences are compared using the sequence identity in their global pairwise alignment. The alignment score lies between 0 (no similarity) and 1 (identical PhAST-Sequences). In order to use global pairwise sequence alignment, a score matrix for pharmacophoric symbols was developed and gap penalties were optimized. PhAST performed comparably and sometimes superior to other similarity search tools (CATS2D, MOE pharmacophore quadruples) in retrospective virtual screenings using the COBRA collection of drugs and lead structures. Most importantly, the PhAST alignment technique allows for the computation of significance estimates that help prioritize a virtual hit list.
The representation of small molecules as molecular graphs is a common technique in various fields of cheminformatics. This approach employs abstract descriptions of topology and properties for rapid analyses and comparison. Receptor-based methods in contrast mostly depend on more complex representations impeding simplified analysis and limiting the possibilities of property assignment. In this study we demonstrate that ligand-based methods can be applied to receptor-derived binding site analysis. We introduce the new method PocketGraph that translates representations of binding site volumes into linear graphs and enables the application of graph-based methods to the world of protein pockets. The method uses the PocketPicker algorithm for characterization of binding site volumes and employs a Growing Neural Gas procedure to derive graph representations of pocket topologies. Self-organizing map (SOM) projections revealed a limited number of pocket topologies. We argue that there is only a small set of pocket shapes realized in the known ligand-receptor complexes.
Wie findet man einen neuen Wirkstoff? Die pharmazeutisch-chemische Forschung steht mit diesem Vorhaben vor einer scheinbar unlösbaren Aufgabe, denn der "chemische Raum" aller wirkstoffartigen Moleküle ist unvorstellbar groß. So wurde geschätzt, dass man prinzipiell aus 1060 bis 10100 verschiedenen Verbindungen die geeigneten Kandidaten auswählen kann. Zum Vergleich: Seit dem Urknall sollen "nur" etwa 10 hoch 18 Sekunden, etwa 14 Milliarden Jahre, vergangen sein. Dies bedeutet, dass der chemische Raum praktisch unendlich ist. Aus dieser Überlegung lassen sich zumindest zwei Schlussfolgerungen ziehen: Zum einen gibt es die begründete Hoffnung, dass ein Molekül mit der gewünschten Aktivität existiert, zum anderen stellt sich die Frage, wie diese unvorstellbar große Zahl chemischer Verbindungen systematisch durchmustert werden kann? Doch die Situation ist nicht so hoffnungslos, wie sie auf den ersten Blick erscheint. Dies zeigt die erfolgreiche Entwicklung immer neuer Medikamente. Das Forschungsgebiet der Chemieinformatik befasst sich mit der Entwicklung von intelligenten Lösungsansätzen, die Chemikern bei dieser Suche nach den "Nadeln im riesigen Heuhaufen" helfen können.
For a virtual screening study, we introduce a combination of machine learning techniques, employing a graph kernel, Gaussian process regression and clustered cross-validation. The aim was to find ligands of peroxisome-proliferator activated receptor gamma (PPAR-y). The receptors in the PPAR family belong to the steroid-thyroid-retinoid superfamily of nuclear receptors and act as transcription factors. They play a role in the regulation of lipid and glucose metabolism in vertebrates and are linked to various human processes and diseases. For this study, we used a dataset of 176 PPAR-y agonists published by Ruecker et al. ...