Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Physik (5)
We study the line shapes of radiative φ-decays with a direct coupling of the φ meson to the f0(980) and a0(980) scalar mesons. The latter couple via derivative interactions to π0π0 and π0η, respectively. Although the kaon-loop mechanism is usually regarded as the dominant mechanism in radiative φ decays, here we test a different possibility: we set the kaon-loop to zero and we fit the theoretical curves to the data by retaining only the direct coupling. Remarkably, satisfactory fits can be achieved, mainly due to the effects of derivative interactions of scalar with pseudoscalar mesons.
We discuss deviations from the exponential decay law which occur when going beyond the BreitWigner distribution for an unstable state. In particular, we concentrate on an oscillating behavior, remisiscent of the Rabi-oscillations, in the short-time region. We propose that these oscillations can explain the socalled GSI anomaly, which measured superimposed oscillations on top of the exponential law for hydrogen-like nuclides decaying via electron-capture. Moreover, we discuss the possibility that the deviations from the Breit-Wigner in the case of the GSI anomaly are (predominantely) caused by the interaction of the unstable state with the measurement apparatus. The consequences of this scenario, such as the non-observation of oscillations in an analogous experiment perfromed at Berkley, are investigated.
We investigate the implications of the r-modes instability on the composition of a compact star rotating at a sub-millisecond period. In particular, the only viable astrophysical scenario for such an object, wich might present inside the Low Mass X-ray Binary associated with the x-ray transient XTE J1739-285, is that it has a strangeness content. Since previous analysis indicate that hyperonic stars or stars containing a kaon condensate are unlikely because of the mass-shedding constraint, the only remaining possibility is that such an object is either a strange quark star or a hybrid quark-hadron star.
After reviewing the description of an unstable state in the framework of nonrelativistic Quantum Mechanics (QM) and relativistic Quantum Field Theory (QFT), we consider the effect of pulsed, ideal measurements repeated at equal time intervals on the lifetime of an unstable system. In particular, we investigate the case in which the ‘bare’ survival probability is an exact exponential (a very good approximation in both QM and QFT), but the measurement apparatus can detect the decay products only in a certain energy range. We show that the Quantum Zeno Effect can occur in this framework as well.
The possible role of a first order QCD phase transition at nonvanishing quark chemical potential and temperature for cold neutron stars and for supernovae is delineated. For cold neutron stars, we use the NJL model with nonvanishing color superconducting pairing gaps, which describes the phase transition to the 2SC and the CFL quark matter phases at high baryon densities. We demonstrate that these two phase transitions can both be present in the core of neutron stars and that they lead to the appearance of a third family of solution for compact stars. In particular, a core of CFL quark matter can be present in stable compact star configurations when slightly adjusting the vacuum pressure to the onset of the chiral phase transition from the hadronic model to the NJL model. We show that a strong first order phase transition can have strong impact on the dynamics of core collapse supernovae. If the QCD phase transition sets in shortly after the first bounce, a second outgoing shock wave can be generated which leads to an explosion. The presence of the QCD phase transition can be read off from the neutrino and antineutrino signal of the supernova.