Refine
Document Type
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Physik (5)
We present a lattice QCD calculation of the heavy-light decay constants fB and fBs performed with Nf = 2 maximally twisted Wilson fermions, at four values of the lattice spacing. The decay constants have been also computed in the static limit and the results are used to interpolate the observables between the charmand the infinite-mass sectors, thus obtaining the value of the decay constants at the physical b quark mass. Our preliminary results are fB = 191(14)MeV, fBs = 243(14)MeV, fBs/ fB = 1.27(5). They are in good agreement with those obtained with a novel approach, recently proposed by our Collaboration (ETMC), based on the use of suitable ratios having an exactly known static limit.
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a ~ 0:06 fm, a ~ 0:08 fm and a ~ 0:09 fm with lattice sizes ranging from L ~ 1:9 fm to L ~ 3:9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.
We present the status of runs performed in the twisted mass formalism with Nf =2+1+1 flavours of dynamical fermions: a degenerate light doublet and a mass split heavy doublet. The procedure for tuning to maximal twist will be described as well as the current status of the runs using both thin and stout links. Preliminary results for a few observables obtained on ensembles at maximal twist will be given. Finally, a reweighting procedure to tune to maximal twist will be described.
We present first results from runs performed with Nf = 2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results obtained with Nf = 2 flavours. The problem of extracting the mass of the K- and D-mesons is discussed, and the tuning of the strange and charm quark masses examined. Finally we compare two methods of extracting the lattice spacings to check the consistency of our data and we present some first results of cPT fits in the light meson sector.