• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Carmona, Guillaume (1)

Year of publication

  • 2008 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Institute

  • Biowissenschaften (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Role of Rap1 in vascular biology (2008)
Carmona, Guillaume
The growth of blood vessels is crucial for organ growth in the embryo and repair of wounded tissues in the adult. An imbalance in this process contributes to numerous malignant, inflammatory, ischemic, infectious and immune disorders (Ferrara et al., 2003). Postnatal neovascularization occurs through the recruitment of progenitor cells and angiogenesis. Integrins are heterodimeric cell surface molecules and are the main receptors for extracellular matrix proteins. Regulation of integrin activation is crucial during embryonic development and during adult life. Dysregulation of integrin activity leads to severe diseases. In this study, we have demonstrated that Rap1, a small GTPase regulating integrin activity, and its GEF Epac1 are expressed in both EPC and endothelial cells. Moreover, the pharmacological activator of Epac activates the small GTPase Rap1 in progenitor cells. In parallel the angiogenic growth factors VEGF and bFGF activate Rap1 in endothelial cells. In addition, the regulation of Rap1 activity in EPC and in endothelial cells plays an important role in the regulation of migration and adhesion to matrix proteins, by regulating the activity of different integrins, a mechanism known as integrin inside‐out signaling. Furthermore, regulation of Rap1 activity affects probably indirectly through outside‐in signaling of integrins the activity of several and crucial proteins such PKB/Akt and focal adhesion kinase in endothelial cells. In line with these results, we have demonstrated that Rap1 activity affect angiogenesis, homing of EPC to ischemic tissues and thereby postnatal neovascularization. The understanding how Rap1 regulates integrin activity in endothelial cells is still not completely clear, for example we have demonstrated that the known effectors of Rap1 mediating the increase of integrin activity in T and B cells, such as RAPL and RIAM are, respectively, either not increasing integrin activity or not expressed in endothelial cells. We aim to find the effector of Rap1 promoting integrin activity in endothelial cells and how RAPL regulates integrin functions and angiogenesis. Moreover data from us and others using genetic models and generation of Rap1a or Rap1b deficient mice or deficient for Rap1a and Rap1b led to embryonic lethality suggesting that Rap1 is a key node protein during embryonic development. The development of conditionnal Rap1a/b endothelial/pericytes restricted deficient mice will help us to decipher more precisely the role of Rap1 during vascular development and angiogenesis.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks