Refine
Year of publication
- 2006 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Mathematik (1)
Die vorliegende Arbeit beschäftigt sich mit der BFV-Reduktion von Hamiltonschen Systemen mit erstklassigen Zwangsbedingungen im Rahmen der klassischen Hamiltonschen Mechanik und im Rahmen der Deformationsquantisierung. Besondere Aufmerksamkeit wird dabei Zwangsbedingungen zuteil, die als Nullfaser singulärer äquivarianter Impulsabbildungen entstehen. Es ist schon länger bekannt, daß für Nullfasern regulärer äquivarianter Impulsabbildungen die in der theoretischen Physik gebräuchliche Methode der BFV-Reduktion zur Phasenraumreduktion nach Marsden/Weinstein äquivalent ist. In [24] konnte gezeigt werden, daß in dieser Situation die BFV-Reduktion sich auch im Rahmen der Deformationsquantisierung natürlich formulieren läßt und erfolgreich zur Konstruktion von Sternprodukten auf Marsden/Weinstein-Quotienten verwendet werden kann. Ein Hauptergebnis der vorliegenden Arbeit besteht in der Verallgemeinerung der Ergebnisse aus [24] auf den Fall singulärer Impulsabbildungen, deren Komponenten 1.) das Verschwindungsideal der Zwangsfläche erzeugen und 2.) einen vollständigen Durchschnitt bilden. Die Argumentation von [24] wird durch Gebrauch der Störungslemmata aus dem Anhang A.1 systematisiert und vereinfacht. Zum Existenzbeweis von stetigen Homotopien und stetiger Fortsetzungsabbildung für die Koszulauflösung werden der Zerfällungssatz und der Fortsetzungssatz von Bierstone und Schwarz [20] benutzt. Außerdem wird ein ’Jacobisches Kriterium’ für die Überprüfung von Bedingung 2.) angegeben. Basierend auf diesem Kriterium und Techniken aus [3] werden die Bedingungen 1.) und 2.) an einer Reihe von Beispielen getestet. Als Korollar erhält man den Beweis dafür, daß es symplektisch stratifizierte Räume gibt, die keine Orbifaltigkeiten sind und dennoch eine stetige Deformationsquantisierung zulassen. Ferner wird (ähnlich zu [92]) eine konzeptionielle Erklärung dafür gegeben, warum im Fall vollständiger Durchschnitte das Problem der Quantisierung der BRST-Ladung eine so einfache Lösung hat. Bildet die Impulsabbildung eine erstklassige Zwangsbedingung, ist aber kein vollständiger Durchschnitt, dann ist es im allgemeinen nicht bekannt, wie entsprechende Quantenreduktionsresultate zu erzielen sind. Ein Hauptaugenmerk der Untersuchung wird es deshalb sein, in dieser Situation die klassische BFV-Reduktion besser zu verstehen – natürlich in der Hoffnung, Grundlagen für eine etwaige (Deformations-)Quantisierung zu liefern. Wir werden feststellen, daß es zwei Gründe gibt, die Tate-Erzeuger (alias: Antigeister höheren Niveaus) notwendig machen: die Topologie der Zwangsfläche und die Singularitätentheorie der Impulsabbildung. Die Zahl der Tate-Erzeuger kann durch Übergang zu projektiven Tate-Erzeugern, also Vektorbündeln, verringert werden. Allerdings sorgt Halperins Starrheitssatz [57] dafür, daß im wesentlichen alle Fälle, für die die Zwangsfläche kein lokal vollständiger Durchschnitt ist, zu unendlich vielen Tate-Erzeugern führen. Erzeugen die Komponenten einer Impulsabbildung einer linearen symplektischen Gruppenwirkung das Verschwindungsideal der Zwangsfläche, so kann man eine lokal endliche Tate-Auflösung finden. Diese besitzt nach dem Fortsetzungssatz und dem Zerfällungssatz von Bierstone und Schwarz stetige, kontrahierende Homotopien. Ausgehend von einer solchen Tate-Auflösung konstruieren wir, die klassische BFV-Konstruktion für vollständige Durchschnitte verallgemeinernd, eine graduierte superkommutative Algebra. Wir können zeigen, daß diese graduierte Algebra auch im Vektorbündelfall eine graduierte Poissonklammer besitzt, die sogenannte Rothstein-Poissonklammer. Die Existenz einer solchen Poissonklammer war bereits von Rothstein [87] für die einfachere Situation einer symplektischen Supermannigfaltigkeit bewiesen worden. Darüberhinaus werden wir sehen, daß es auch im Vektorbündelfall eine BRST-Ladung gibt. Diese sieht im Fall von Impulsabbildungen etwas einfacher aus als für allgemeine erstklassige Zwangsbedingungen. Insgesamt wird also die klassische BFV-Konstruktion [95] auf den Fall projektiver Tate-Erzeuger verallgemeinert, und als eine Homotopieäquivalenz in der additiven Kategorie der Fréchet-Räume interpretiert.