Refine
Document Type
- Article (12)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Clinical genetics (2)
- Psychiatric disorders (2)
- Agoraphobia (1)
- Alcohol consumption (1)
- Blood pressure (1)
- Cardiovascular biology (1)
- Cognitive impairment (1)
- Decision making (1)
- Depression (1)
- Diagnostic markers (1)
Institute
Increased sympathetic noradrenergic signaling is crucially involved in fear and anxiety as defensive states. MicroRNAs regulate dynamic gene expression during synaptic plasticity and genetic variation of microRNAs modulating noradrenaline transporter gene (SLC6A2) expression may thus lead to altered central and peripheral processing of fear and anxiety. In silico prediction of microRNA regulation of SLC6A2 was confirmed by luciferase reporter assays and identified hsa-miR-579-3p as a regulating microRNA. The minor (T)-allele of rs2910931 (MAFcases = 0.431, MAFcontrols = 0.368) upstream of MIR579 was associated with panic disorder in patients (pallelic = 0.004, ncases = 506, ncontrols = 506) and with higher trait anxiety in healthy individuals (pASI = 0.029, pACQ = 0.047, n = 3112). Compared to the major (A)-allele, increased promoter activity was observed in luciferase reporter assays in vitro suggesting more effective MIR579 expression and SLC6A2 repression in vivo (p = 0.041). Healthy individuals carrying at least one (T)-allele showed a brain activation pattern suggesting increased defensive responding and sympathetic noradrenergic activation in midbrain and limbic areas during the extinction of conditioned fear. Panic disorder patients carrying two (T)-alleles showed elevated heart rates in an anxiety-provoking behavioral avoidance test (F(2, 270) = 5.47, p = 0.005). Fine-tuning of noradrenaline homeostasis by a MIR579 genetic variation modulated central and peripheral sympathetic noradrenergic activation during fear processing and anxiety. This study opens new perspectives on the role of microRNAs in the etiopathogenesis of anxiety disorders, particularly their cardiovascular symptoms and comorbidities.
Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0–T1: +3.37±2.17%), while non-responders further decreased in methylation (−2.00±1.28%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02–0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.
Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10−7), particularly in the female subsample (p = 9.8 × 10−9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10−4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.
Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females.
Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score.
Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.
No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors
(2019)
Background: IgG-class autoantibodies to N-Methyl-D-Aspartate (NMDA)-type glutamate receptors define a novel entity of autoimmune encephalitis. Studies examining the prevalence of NMDA IgA/IgM antibodies in patients with Parkinson disease with/without dementia produced conflicting results. We measured NMDA antibodies in a large, well phenotyped sample of Parkinson patients without and with cognitive impairment (n = 296) and controls (n = 295) free of neuropsychiatric disease. Detailed phenotyping and large numbers allowed statistically meaningful correlation of antibody status with diagnostic subgroups as well as quantitative indicators of disease severity and cognitive impairment.
Methods: NMDA antibodies were analysed in the serum of patients and controls using well established validated assays. We used anti-NMDA antibody positivity as the main independent variable and correlated it with disease status and phenotypic characteristics.
Results: The frequency of NMDA IgA/IgM antibodies was lower in Parkinson patients (13%) than in controls (22%) and higher than in previous studies in both groups. NMDA IgA/IgM antibodies were neither significantly associated with diagnostic subclasses of Parkinson disease according to cognitive impairment, nor with quantitative indicators of disease severity and cognitive impairment. A positive NMDA antibody status was positively correlated with age in controls but not in Parkinson patients.
Conclusion: It is unlikely albeit not impossible that NMDA antibodies play a significant role in the pathogenesis or progression of Parkinson disease e.g. to Parkinson disease with dementia, while NMDA IgG antibodies define a separate disease of its own.
Improved risk stratification in prevention by use of a panel of selected circulating microRNAs
(2017)
Risk stratification is crucial in prevention. Circulating microRNAs have been proposed as biomarkers in cardiovascular disease. Here a miR panel consisting of miRs related to different cardiovascular pathophysiologies, was evaluated to predict outcome in the context of prevention. MiR-34a, miR-223, miR-378, miR-499 and miR-133 were determined from peripheral blood by qPCR and combined to a risk panel. As derivation cohort, 178 individuals of the DETECT study, and as validation cohort, 129 individuals of the SHIP study were used in a case-control approach. Overall mortality and cardiovascular events were outcome measures. The Framingham Risk Score(FRS) and the SCORE system were applied as risk classification systems. The identified miR panel was significantly associated with mortality given by a hazard ratio(HR) of 3.0 (95% (CI): 1.09–8.43; p = 0.034) and of 2.9 (95% CI: 1.32–6.33; p = 0.008) after adjusting for the FRS in the derivation cohort. In a validation cohort the miR-panel had a HR of 1.31 (95% CI: 1.03–1.66; p = 0.03) and of 1.29 (95% CI: 1.02–1.64; p = 0.03) in a FRS/SCORE adjusted-model. A FRS/SCORE risk model was significantly improved to predict mortality by the miR panel with continuous net reclassification index of 0.42/0.49 (p = 0.014/0.005). The present miR panel of 5 circulating miRs is able to improve risk stratification in prevention with respect to mortality beyond the FRS or SCORE.
The use of cardiac troponins (cTn) is the gold standard for diagnosing myocardial infarction. Independent of myocardial infarction (MI), however, sex, age and kidney function affect cTn levels. Here we developed a method to adjust cTnI levels for age, sex, and renal function, maintaining a unified cut-off value such as the 99th percentile. A total of 4587 individuals enrolled in a prospective longitudinal study were used to develop a model for adjustment of cTn. cTnI levels correlated with age and estimated glomerular filtration rate (eGFR) in males/females with rage = 0.436/0.518 and with reGFR = −0.142/−0.207. For adjustment, these variables served as covariates in a linear regression model with cTnI as dependent variable. This adjustment model was then applied to a real-world cohort of 1789 patients with suspected acute MI (AMI) (N = 407). Adjusting cTnI showed no relevant loss of diagnostic information, as evidenced by comparable areas under the receiver operator characteristic curves, to identify AMI in males and females for adjusted and unadjusted cTnI. In specific patients groups such as in elderly females, adjusting cTnI improved specificity for AMI compared with unadjusted cTnI. Specificity was also improved in patients with renal dysfunction by using the adjusted cTnI values. Thus, the adjustments improved the diagnostic ability of cTnI to identify AMI in elderly patients and in patients with renal dysfunction. Interpretation of cTnI values in complex emergency cases is facilitated by our method, which maintains a single diagnostic cut-off value in all patients.
Background: Previous experimental research on testosterone (T) and psychological traits is inconclusive. Thus, we performed the first large-scale observational study of the association between T and dispositional optimism / pessimism.
Methods: We used prospective data from 6,493 primary-care patients (3,840 women) of the DETECT study (Diabetes Cardiovascular Risk-Evaluation: Targets and Essential Data for Commitment of Treatment), including repeated immunoassay-based measurement of serum T and optimism / pessimism assessed by the revised Life-Orientation Test (LOT-R). Cross-sectional and longitudinal associations of baseline T and one-year change in T with optimism and pessimism were investigated using age- and multivariable-adjusted regression models.
Results: Cross-sectional analyses showed no association of T with optimism or pessimism in both sexes. Longitudinal analyses also showed no association of baseline T with optimism or pessimism at four-year follow-up. Multivariable analyses of total LOT-R score yielded similarly non-significant results (β-coefficient per unit change in T for men: -0.01 (95% CI: -0.24–0.22), women: 0.08 (-0.03–0.20)). Furthermore, change in T was not related to optimism or pessimism at four-year follow-up.
Conclusions: The present observational study of a large-scale prospective sample showed no association of T with optimism or pessimism. Integrating further experimental and interventional evidence from alternative methodological approaches would strengthen this conclusion and establish stronger evidence about the potential hormonal basis of psychological traits.
Introduction: The neurobiological mechanisms behind panic disorder with agoraphobia (PD/AG) are not completely explored. The functional A/T single nucleotide polymorphism (SNP) rs324981 in the neuropeptide S receptor gene (NPSR1) has repeatedly been associated with panic disorder and might partly drive function respectively dysfunction of the neural “fear network”. We aimed to investigate whether the NPSR1 T risk allele was associated with malfunctioning in a fronto-limbic network during the anticipation and perception of agoraphobia-specific stimuli.
Method: 121 patients with PD/AG and 77 healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) using the disorder specific “Westphal-Paradigm”. It consists of neutral and agoraphobia-specific pictures, half of the pictures were cued to induce anticipatory anxiety.
Results: Risk allele carriers showed significantly higher amygdala activation during the perception of agoraphobia-specific stimuli than A/A homozygotes. A linear group x genotype interaction during the perception of agoraphobia-specific stimuli showed a strong trend towards significance. Patients with the one or two T alleles displayed the highest and HC with the A/A genotype the lowest activation in the inferior orbitofrontal cortex (iOFC).
Discussion: The study demonstrates an association of the NPSR1rs324981 genotype and the perception of agoraphobia-specific stimuli. These results support the assumption of a fronto-limbic dysfunction as an intermediate phenotype of PD/AG.
Representing a phylogenetically old and very basic mechanism of inhibitory neurotransmission, glycine receptors have been implicated in the modulation of behavioral components underlying defensive responding toward threat. As one of the first findings being confirmed by genome-wide association studies for the phenotype of panic disorder and agoraphobia, allelic variation in a gene coding for the glycine receptor beta subunit (GLRB) has recently been associated with increased neural fear network activation and enhanced acoustic startle reflexes. On the basis of two independent healthy control samples, we here aimed to further explore the functional significance of the GLRB genotype (rs7688285) by employing an intermediate phenotype approach. We focused on the phenotype of defensive system reactivity across the levels of brain function, structure, and physiology. Converging evidence across both samples was found for increased neurofunctional activation in the (anterior) insular cortex in GLRB risk allele carriers and altered fear conditioning as a function of genotype. The robustness of GLRB effects is demonstrated by consistent findings across different experimental fear conditioning paradigms and recording sites. Altogether, findings provide translational evidence for glycine neurotransmission as a modulator of the brain’s evolutionary old dynamic defensive system and provide further support for a strong, biologically plausible candidate intermediate phenotype of defensive reactivity. As such, glycine-dependent neurotransmission may open up new avenues for mechanistic research on the etiopathogenesis of fear and anxiety disorders.