Refine
Year of publication
Has Fulltext
- yes (117)
Is part of the Bibliography
- no (117)
Keywords
- BESIII (6)
- Rubus (5)
- Lower Saxony (4)
- batology (4)
- Germany (3)
- Branching fractions (2)
- Charmonium (2)
- Cross section (2)
- Hadronic decays (2)
- Westfalia (2)
Senecio inaequidens DC., eine in Mitteleuropa bislang nur von Ruderalstandorten bekannte Art, hat sich neuerdings auf den Ostfriesischen Inseln als fester Bestandteil der natürlichen Dünenvegetation (Elymo-Ammophiletum, Hippophao-Salicetum arenariae)etabliert und sich dort vom Epökophyten zum Agriophyten gewandelt. Auf entsprechenden Standorten wurde die Art bislang auf Borkum, Baltrum, Spiekeroog, Wangerooge, Oldeoog und Mellum gefunden.
By analyzing the large-angle Bhabha scattering events e+e− → (γ)e+e− and diphoton events e+e− → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→K0SK0SK+, D+→K0SK0Sπ+, D0→K0SK0S and D0→K0SK0SK0S. They are determined to be B(D+→K0SK0SK+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→K0SK0Sπ+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→K0SK0S)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→K0SK0SK0S)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
To study the nature of the state Y (2175), a dedicated data set of e+e− collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb−1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
Using a data sample of 448.1×106 𝜓(3686) events collected with the BESIII detector operating at the BEPCII, we perform search for the hadronic transition ℎ𝑐→𝜋+𝜋−𝐽/𝜓 via 𝜓(3686)→𝜋0ℎ𝑐. No signals of the transition are observed, and the upper limit on the product branching fraction ℬ(𝜓(3686)→𝜋0ℎ𝑐)ℬ(ℎ𝑐→𝜋+𝜋−𝐽/𝜓) at the 90% confidence level (C.L.) is determined to be 2.0×10−6. This is the most stringent upper limit to date.
The decay 𝐽/𝜓→𝛾𝛾𝜙 is studied using a sample of 1.31×109 𝐽/𝜓 events collected with the BESIII detector. Two structures around 1475 MeV/𝑐2 and 1835 MeV/𝑐2 are observed in the 𝛾𝜙 invariant mass spectrum for the first time. With a fit on the 𝛾𝜙 invariant mass, which takes into account the interference between the two structures, and a simple analysis of the angular distribution, the structure around 1475 MeV/𝑐2 is found to favor an assignment as the 𝜂(1475) and the mass and width for the structure around 1835 MeV/𝑐2 are consistent with the 𝑋(1835). The statistical significances of the two structures are 13.5𝜎 and 6.3𝜎, respectively. The results indicate that both 𝜂(1475) and 𝑋(1835) contain a sizeable 𝑠¯𝑠 component.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Measurements of the branching fractions for D⁺ → Kₛ⁰Kₛ⁰K⁺, Kₛ⁰Kₛ⁰π⁺ and D⁰ → Kₛ⁰Kₛ⁰, Kₛ⁰Kₛ⁰Kₛ⁰
(2016)
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+ → K0S K0S K +, D+ → K0S K0Sπ+, D0 → K0S K0S and D0 → K0S K0S K0S . They are determined to be B(D+ → K0S K0S K +) = (2.54 ± 0.05stat. ± 0.12sys.) × 10−3, B(D+ → K0S K0Sπ+) = (2.70 ± 0.05stat. ± 0.12sys.) × 10−3, B(D0 → K0S K0S ) = (1.67 ± 0.11stat. ± 0.11sys.) × 10−4 and B(D0 → K0S K0S K0S ) = (7.21 ± 0.33stat. ± 0.44sys.) × 10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.