Refine
Year of publication
Document Type
- Article (34)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- stroke (4)
- Stroke (2)
- ceramides (2)
- cerebral hemorrhage (2)
- cerebral venous thrombosis (2)
- epilepsy (2)
- hyperglycemia (2)
- multiple sclerosis (2)
- neurodegeneration (2)
- spinal dural leaks (2)
Institute
- Medizin (34)
- Biowissenschaften (1)
- MPI für Hirnforschung (1)
- Pharmazie (1)
Background: The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS) are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods: Adults with PDS (n = 10) and controls (n = 10) matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM) the brains of stutterers and non-stutterers were compared with respect to white matter (WM) and grey matter (GM) differences. Results: We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars triangularis), the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions: These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question. This article is available from: http://www.biomedcentral.com/1471-2377/4/23 © 2004 Jäncke et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hinter dem Begriff "Schlaganfall" verbergen sich verschiedene Krankheitsbilder, die durch gemeinsame Merkmale gekennzeichnet sind: Die Beschwerden treten akut auf, oftmals von einer Sekunde zur anderen. Ein Schlagfall ist darüber hinaus durch das Auftreten von charakteristischen neurologischen Symptomen gekennzeichnet, wie halbseitige Lähmungen, Sprach-, Seh- oder Gefühlsstörungen. Die Ursache hierfür liegt in Veränderungen in den Blutgefäßen des Gehirns, wie die Autoren erläutern.
Cortical changes in epilepsy patients with focal cortical dysplasia: new insights with T2 mapping
(2020)
Background: In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. Purpose: To investigate cortical properties outside FCD regions with T2-relaxometry. Study Type: Prospective study. Subjects: Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. Field Strength/Sequence: 3T, fast spin-echo T2-mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1-weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1-maps. Assessment: Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. Statistical Tests: General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. Results: Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. Data Conclusion: Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. Evidence Level: 21. Technical efficacy Stage: 3 J. MAGN. RESON. IMAGING 2020;52:1783–1789.
Magnetic resonance imaging (MRI) is the gold standard imaging technique for diagnosis and monitoring of many neurological diseases. However, the application of conventional MRI in clinical routine is mainly limited to the visual detection of macroscopic tissue pathology since mixed tissue contrasts depending on hardware and protocol parameters hamper its application for the assessment of subtle or diffuse impairment of the structural tissue integrity. Multiparametric quantitative (q)MRI determines tissue parameters quantitatively, enabling the detection of microstructural processes related to tissue remodeling in aging and neurological diseases. In contrast to measuring tissue atrophy via structural imaging, multiparametric qMRI allows for investigating biologically distinct microstructural processes, which precede changes of the tissue volume. This facilitates a more comprehensive characterization of tissue alterations by revealing early impairment of the microstructural integrity and specific disease-related patterns. So far, qMRI techniques have been employed in a wide range of neurological diseases, including in particular conditions with inflammatory, cerebrovascular and neurodegenerative pathology. Numerous studies suggest that qMRI might add valuable information, including the detection of microstructural tissue damage in areas appearing normal on conventional MRI and unveiling the microstructural correlates of clinical manifestations. This review will give an overview of current qMRI techniques, the most relevant tissue parameters and potential applications in neurological diseases, such as early (differential) diagnosis, monitoring of disease progression, and evaluating effects of therapeutic interventions.
Introduction: Ischemic and hemorrhagic strokes in the brainstem and cerebellum with injury to the functional loop of the Guillain-Mollaret triangle (GMT) can trigger a series of events that result in secondary trans-synaptic neurodegeneration of the inferior olivary nucleus. In an unknown percentage of patients, this leads to a condition called hypertrophic olivary degeneration (HOD). Characteristic clinical symptoms of HOD progress slowly over months and consist of a rhythmic palatal tremor, vertical pendular nystagmus, and Holmes tremor of the upper limbs. Diffusion Tensor Imaging (DTI) with tractography is a promising method to identify functional pathway lesions along the cerebello-thalamo-cortical connectivity and to generate a deeper understanding of the HOD pathophysiology. The incidence of HOD development following stroke and the timeline of clinical symptoms have not yet been determined in prospective studies—a prerequisite for the surveillance of patients at risk. Methods and Analysis: Patients with ischemic and hemorrhagic strokes in the brainstem and cerebellum with a topo-anatomical relation to the GMT are recruited within certified stroke units of the Interdisciplinary Neurovascular Network of the Rhine-Main. Matching lesions are identified using a predefined MRI template. Eligible patients are prospectively followed up and present at 4 and 8 months after the index event. During study visits, a clinical neurological examination and brain MRI, including high-resolution T2-, proton-density-weighted imaging, and DTI tractography, are performed. Fiberoptic endoscopic evaluation of swallowing is optional if palatal tremor is encountered. Study Outcomes: The primary endpoint of this prospective clinical multicenter study is to determine the frequency of radiological HOD development in patients with a posterior fossa stroke affecting the GMT at 8 months after the index event. Secondary endpoints are identification of (1) the timeline and relevance of clinical symptoms, (2) lesion localizations more prone to HOD occurrence, and (3) the best MR-imaging regimen for HOD identification. Additionally, (4) DTI tractography data are used to analyze individual pathway lesions. The aim is to contribute to the epidemiological and pathophysiological understanding of HOD and hereby facilitate future research on therapeutic and prophylactic measures.
Aims: Carotid intima media thickness (CIMT) predicts cardiovascular (CVD) events, but the predictive value of CIMT change is debated. We assessed the relation between CIMT change and events in individuals at high cardiovascular risk.
Methods and results: From 31 cohorts with two CIMT scans (total n = 89070) on average 3.6 years apart and clinical follow-up, subcohorts were drawn: (A) individuals with at least 3 cardiovascular risk factors without previous CVD events, (B) individuals with carotid plaques without previous CVD events, and (C) individuals with previous CVD events. Cox regression models were fit to estimate the hazard ratio (HR) of the combined endpoint (myocardial infarction, stroke or vascular death) per standard deviation (SD) of CIMT change, adjusted for CVD risk factors. These HRs were pooled across studies.
In groups A, B and C we observed 3483, 2845 and 1165 endpoint events, respectively. Average common CIMT was 0.79mm (SD 0.16mm), and annual common CIMT change was 0.01mm (SD 0.07mm), both in group A. The pooled HR per SD of annual common CIMT change (0.02 to 0.43mm) was 0.99 (95% confidence interval: 0.95–1.02) in group A, 0.98 (0.93–1.04) in group B, and 0.95 (0.89–1.04) in group C. The HR per SD of common CIMT (average of the first and the second CIMT scan, 0.09 to 0.75mm) was 1.15 (1.07–1.23) in group A, 1.13 (1.05–1.22) in group B, and 1.12 (1.05–1.20) in group C.
Conclusions: We confirm that common CIMT is associated with future CVD events in individuals at high risk. CIMT change does not relate to future event risk in high-risk individuals.
Aims: Averaged measurements, but not the progression based on multiple assessments of carotid intima-media thickness, (cIMT) are predictive of cardiovascular disease (CVD) events in individuals. Whether this is true for conventional risk factors is unclear.
Methods and results: An individual participant meta-analysis was used to associate the annualised progression of systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with future cardiovascular disease risk in 13 prospective cohort studies of the PROG-IMT collaboration (n = 34,072). Follow-up data included information on a combined cardiovascular disease endpoint of myocardial infarction, stroke, or vascular death. In secondary analyses, annualised progression was replaced with average. Log hazard ratios per standard deviation difference were pooled across studies by a random effects meta-analysis. In primary analysis, the annualised progression of total cholesterol was marginally related to a higher cardiovascular disease risk (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.00 to 1.07). The annualised progression of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol was not associated with future cardiovascular disease risk. In secondary analysis, average systolic blood pressure (HR 1.20 95% CI 1.11 to 1.29) and low-density lipoprotein cholesterol (HR 1.09, 95% CI 1.02 to 1.16) were related to a greater, while high-density lipoprotein cholesterol (HR 0.92, 95% CI 0.88 to 0.97) was related to a lower risk of future cardiovascular disease events.
Conclusion: Averaged measurements of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol displayed significant linear relationships with the risk of future cardiovascular disease events. However, there was no clear association between the annualised progression of these conventional risk factors in individuals with the risk of future clinical endpoints.
Background and purpose: Superficial siderosis of the central nervous system is a sporadic finding in magnetic resonance imaging, resulting from recurrent bleedings into the subarachnoid space. This study aimed to determine the frequency of spinal dural cerebrospinal fluid (CSF) leaks amongst patients with a symmetric infratentorial siderosis pattern. Methods: In all, 97,733 magnetic resonance images performed between 2007 and 2018 in our neurocenter were screened by a keyword search for “hemosiderosis” and “superficial siderosis.” Siderosis patterns on brain imaging were classified according to a previously published algorithm. Potential causative intracranial bleeding events were also assessed. Patients with a symmetric infratentorial siderosis pattern but without causative intracranial bleeding events in history were prospectively evaluated for spinal pathologies. Results: Forty-two patients with isolated supratentorial siderosis, 30 with symmetric infratentorial siderosis and 21 with limited (non-symmetric) infratentorial siderosis were identified. Amyloid angiopathy and subarachnoid hemorrhage were causes for isolated supratentorial siderosis. In all four patients with a symmetric infratentorial siderosis pattern but without a causative intracranial bleeding event in history, spinal dural abnormalities were detected. Dural leaks were searched for in patients with symmetric infratentorial siderosis and a history of intracranial bleeding event without known bleeding etiology, considering that spinal dural CSF leaks themselves may also cause intracranial hemorrhage, for example by inducing venous thrombosis due to low CSF pressure. Thereby, one additional spinal dural leak was detected. Conclusions: Persisting spinal dural CSF leaks can frequently be identified in patients with a symmetric infratentorial siderosis pattern. Diagnostic workup in these cases should include magnetic resonance imaging of the whole spine.
(1) Intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) in patients with acute ischemic stroke is limited because of several contraindications. In routine clinical practice, patients with a recent stroke are typically not treated with rt-PA in case of a recurrent ischemic event. The same applies to its use in the context of pulmonary artery embolism and myocardial infarction with a recent stroke. In this translational study, we evaluated whether rt-PA treatment after experimental ischemic stroke with or without additional hyperglycemia increases the risk for hemorrhagic transformation (HT) and worsens functional outcome regarding the old infarct area. (2) In total, 72 male C57BL/6N mice were used. Ischemic stroke (index stroke) was induced by transient middle cerebral artery occlusion (tMCAO). Mice received either rt-PA or saline 24 h or 14 days after index stroke to determine whether a recent ischemic stroke predisposes to HT. In addition to otherwise healthy mice, hyperglycemic mice were analyzed to evaluate diabetes as a second risk factor for HT. Mice designated to develop hyperglycemia were pre-treated with streptozotocin. (3) The neurological outcome in rt-PA and saline-treated normoglycemic mice did not differ significantly, either at 24 h or at 14 days. In contrast, hyperglycemic mice treated with rt-PA had a significantly worse neurological outcome (at 24 h, p = 0.02; at 14 days, p = 0.03). At 24 h after rt-PA or saline treatment, HT scores differed significantly (p = 0.02) with the highest scores within hyperglycemic mice treated with rt-PA, where notably only small petechial hemorrhages could be detected. (4) Thrombolysis after recent ischemic stroke does not increase the risk for HT or worsen the functional outcome in otherwise healthy mice. However, hyperglycemia as a second risk factor leads to neurological deterioration after rt-PA treatment, which cannot be explained by an increase of HT alone. Direct neurotoxic effects of rt-PA may play a role.