Refine
Has Fulltext
- yes (81)
Is part of the Bibliography
- no (81)
Keywords
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (74)
- Physik (5)
- Medizin (1)
Background: Effective inhibition of plasma kallikrein may have significant benefits for patients with hereditary angioedema due to deficiency of C1 inhibitor (C1‐INH‐HAE) by reducing the frequency of angioedema attacks. Avoralstat is a small molecule inhibitor of plasma kallikrein. This study (OPuS‐2) evaluated the efficacy and safety of prophylactic avoralstat 300 or 500 mg compared with placebo.
Methods: OPuS‐2 was a Phase 3, multicenter, randomized, double‐blind, placebo‐controlled, parallel‐group study. Subjects were administered avoralstat 300 mg, avoralstat 500 mg, or placebo orally 3 times per day for 12 weeks. The primary efficacy endpoint was the angioedema attack rate based on adjudicator‐confirmed attacks.
Results: A total of 110 subjects were randomized and dosed. The least squares (LS) mean attack rates per week were 0.589, 0.675, and 0.593 for subjects receiving avoralstat 500 mg, avoralstat 300 mg, and placebo, respectively. Overall, 1 subject in each of the avoralstat groups and no subjects in the placebo group were attack‐free during the 84‐day treatment period. The LS mean duration of all confirmed attacks was 25.4, 29.4, and 31.4 hours for the avoralstat 500 mg, avoralstat 300 mg, and placebo groups, respectively. Using the Angioedema Quality of Life Questionnaire (AE‐QoL), improved QoL was observed for the avoralstat 500 mg group compared with placebo. Avoralstat was generally safe and well tolerated.
Conclusions: Although this study did not demonstrate efficacy of avoralstat in preventing angioedema attacks in C1‐INH‐HAE, it provided evidence of shortened angioedema episodes and improved QoL in the avoralstat 500 mg treatment group compared with placebo.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Elliptic flow of heavy-flavor decay electrons in Au+Au collisions at √sNN = 27 and 54.4 GeV at RHIC
(2023)
We report on new measurements of elliptic flow (v2) of electrons from heavy-flavor hadron decays at mid-rapidity (|y|<0.8) in Au+Au collisions at sNN−−−√ = 27 and 54.4 GeV from the STAR experiment. Heavy-flavor decay electrons (eHF) in Au+Au collisions at sNN−−−√ = 54.4 GeV exhibit a non-zero v2 in the transverse momentum (pT) region of pT< 2 GeV/c with the magnitude comparable to that at sNN−−−√=200 GeV. The measured eHF v2 at 54.4 GeV is also consistent with the expectation of their parent charm hadron v2 following number-of-constituent-quark scaling as other light and strange flavor hadrons at this energy. These suggest that charm quarks gain significant collectivity through the evolution of the QCD medium and may reach local thermal equilibrium in Au+Au collisions at sNN−−−√=54.4 GeV. The measured eHF v2 in Au+Au collisions at sNN−−−√= 27 GeV is consistent with zero within large uncertainties. The energy dependence of v2 for different flavor particles (π,ϕ,D0/eHF) shows an indication of quark mass hierarchy in reaching thermalization in high-energy nuclear collisions.
The strong force, as one of the four fundamental forces at work in the universe, governs interactions of quarks and gluons, and binds together the atomic nucleus. Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distance scales on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely ϕ and K∗0, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for ϕ is unexpectedly large, while that for K∗0 is consistent with zero. The observed spin-alignment pattern and magnitude for the ϕ cannot be explained by conventional mechanisms, while a model with strong force fields accommodates the current data. This is the first time that the strong force field is experimentally supported as a key mechanism that leads to global spin alignment. We extract a quantity proportional to the intensity of the field of the strong force. Within the framework of the Standard Model, where the strong force is typically described in the quark and gluon language of Quantum Chromodynamics, the field being considered here is an effective proxy description. This is a qualitatively new class of measurement, which opens a new avenue for studying the behaviour of strong force fields via their imprint on spin alignment.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at s√=200 GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
The longitudinal and transverse spin transfers to Λ (Λ¯¯¯¯) hyperons in polarized proton-proton collisions are expected to be sensitive to the helicity and transversity distributions, respectively, of (anti-)strange quarks in the proton, and to the corresponding polarized fragmentation functions. We report improved measurements of the longitudinal spin transfer coefficient, DLL, and the transverse spin transfer coefficient, DTT, to Λ and Λ¯¯¯¯ in polarized proton-proton collisions at s√ = 200 GeV by the STAR experiment at RHIC. The data set includes longitudinally polarized proton-proton collisions with an integrated luminosity of 52 pb−1, and transversely polarized proton-proton collisions with a similar integrated luminosity. Both data sets have about twice the statistics of previous results and cover a kinematic range of |ηΛ(Λ¯¯¯¯)| < 1.2 and transverse momentum pT,Λ(Λ¯¯¯¯) up to 8 GeV/c. We also report the first measurements of the hyperon spin transfer coefficients DLL and DTT as a function of the fractional jet momentum z carried by the hyperon, which can provide more direct constraints on the