Refine
Document Type
- Conference Proceeding (2)
- Article (1)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Physik (4)
- Informatik (1)
A non-interceptive optical diagnostic system on the basis of beam tomography, was developed for the planned Frankfurt Neutron Source (FRANZ). The proton driver linac of FRANZ will provide energies up to 2.0 MeV. The measurement device will non-interceptively derive required beam parameters at the end of the LEBT at beam energies of 120 keV and a current of 200 mA. On a narrow space of 351.2 mm length a rotatable tomography tank will perform a multi-turn tomography with a high and stable vacuum pressure. The tank allows to plug different measurement equipment additionally to the CCD Camera installed, to perform optical beam tomography. A collection of developed algorithms provides information about the density distribution, shape, size, location and emittance on the basis of CCD images. Simulated, as well as measured data have been applied to the evaluation algorithms to test the reliability of the beam. The actual contribution gives an overview on the current diagnostic possibilities of this diagnostic system.
A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is tested with a time independent 10 keV He beam. The measurements and performance of data processing algorithms are compared with the beam transport simulations. In a later phase the performance with time dependent beams (120 keV, 200 mA) at a repetition rate of 250 kHz and a duty cycle of 2.5% has to be evaluated. An overview of the first phase results is shown.
The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low resolutions.
Ende der 70ger Jahre, fünf Jahre nach der Einführung des ersten kommerziellen, medizinischen Computertomographen wurde die Tomographie am Los Alamos Scientific Laboratory zum ersten Mal für die Diagnose von Teilchenstrahlen angewendet. Bei der Tomographie wird aus eindimensionalen Projektionen, sogenannten Profilen, welche in möglichst vielen Winkeln um ein Objekt herum aufgenommen werden, ein zweidimensionales Abbild der Dichteverteilung (Slice oder Scheibe) approximiert. Dies ist möglich durch das bereits 1917 von Johann Radon eingeführte Fourier-Scheiben-Theorem. In der Theorie kann die zwei-dimensionale Dichteverteilung exakt ermittelt werden, wenn Projektionen mit einer unendlich feinen Auflösung über unendlich viele Winkel um ein Objekt herum in die Rekonstruktion einbezogen werden. Durch die Rekonstruktion vieler Scheiben kann ein drei-dimensionales Abbild der Dichteverteilung in einem Objekt, in diesem Fall einem Ionenstrahl, berechnet werden, sofern dieses nicht optisch dicht ist.
Die Profile in der nicht-invasiven Strahldiagnose entstehen durch CCD-Kameraaufnahmen von strahlinduzierter Fluoreszenz, welche durch den Einlass von Restgas hervorgerufen wird. Es sind aber auch Profile, welche aus anderen Methoden gewonnen werden (z.B. Gittermessungen) denkbar. An Orten mit hoher Energie ist jedoch eine nicht-invasive Form der Profilaufnahme sowohl für die Qualität des Strahls, wie auch den Schutz der Messgeräte unabdingbar.
In den letzten 40 Jahren wurden im Bereich der Strahltomographie viele wichtige Fortschritte erzielt:
1. Anfangs standen nur sehr wenige Profile zur Verfügung, so dass die Methode der gefilterten Rückprojektion(FBP), welche sich direkt aus dem Fourier-Scheiben-Theorem ableitet und welches auch in der Medizin verwendet wird, nicht angewendet werden kann. Um dieses Problem zu lösen wurden iterative Methoden wie die Algebraische Rekonstruktion (ART) und die Methode der Maximalen Entropie (MEM) für die Strahltomographie erschlossen, so dass auch mit sehr geringer Profilanzahl eine Rücktransformation möglich wurde.
2. Neben der Ortsraumtomographie wurde die Phasenraumtomografie entwickelt, so dass mittlerweile eine Rekonstruktion des sechs-dimensionalen Phasenraumes möglich ist, mit welchem ein Ionenstrahl in seiner Gesamtheit beschrieben werden kann.
3. Die Projektionen wurden lange Zeit durch Aufnahmen von mehreren festen Anschlüssen aus gewonnen (Multi-Port-Technik). Auf diese Weise ist die Anzahl der möglichen Projektionen sehr begrenzt. So entwickelte man später eine Methode welche den Strahl mit Hilfe von Quadrupolen dreht (Quad-Scan-Technik), so dass auf diese Weise von einem Anschluss aus viele Projektionen gemessen werden konnten, so dass sogar die FBP angewendet werden konnte.
4. Die meisten Bestrebungen zielten darauf ab, die Tomographie für eine nicht-invasive Emittanzmessmethode zu nutzen, welches bis heute aufgrund der großen und noch immer zunehmenden Energien in modernen Beschleunigern ein wichtiges Problem ist. Um die Tomographie zur Emittanzmessung zu verwenden, führt man eine Rekonstruktion des Phasenraumes durch. Das Problem ist, dass hierfür das a priori Wissen über die Strahltransportmatrix in die Tomographie mit einfließt, die berechnete Strahltransportmatrix
jedoch nicht mit dem tatsächlichen Strahltransport übereinstimmt, da dieser bei hohen Energien durch auftretende Raumladung nicht-linear verändert wird. Hierzu wurden gute Fortschritte in der Abschätzung der tatsächlichen Transportmatrix gemacht um die Phasenraumtomographie trotzdem mit hinreichend gutem Ergebnis durchführen zu können.
Trotz all dieser Fortschritte und Entwicklungen ist die Tomographie bis heute keine weitverbreitete Methode in der Strahldiagnose. Der Grund ist, dass das Einrichten einer Tomografie eine komplexe Abfolge etlicher Entscheidungen und weitgestreutes Wissen aus vielen unterschiedlichen Bereichen erfordert, dieser nicht zu unterschätzende Mehraufwand jedoch auch durch einen signifikanten Nutzen gerechtfertigt sein muss. Der große Nutzen der Tomographie für die Strahldiagnose und Untersuchung der Strahldynamik ist bis heute allerdings weitgehend unerkannt und weiterhin reduziert auf die Entwicklung einer nicht-invasiven Methode für die Emittanzbestimmung. Ein zweites Hindernis stellte bisher auch die Diskrepanz zwischen Genauigkeit und Platzaufwand dar (hohe Genauigkeit durch viele Projektionen mit Quad-Scan-Technik auf mehreren Metern oder niedrige Genauigkeit durch wenig Projektionen mit Multi-Port-Technik auf weniger als einem Meter). Die Tomografie kann großen Nutzen leisten für die Online-Überwachung wichtiger Maschineneparameter im Strahlbetrieb (Monitoring) als auch für detaillierte Analysen zur Strahldynamik (Modellierung) weit über die Implementierung einer nicht-invasiven Emittanzmessmethode hinaus.
Um dies zu gewährleisten Bedarf es Zweierlei. Zum einen muss die Diskrepanz zwischen Genauigkeit und Platzaufwand aufgehoben werden. Hierzu wurde im Rahmen dieser Arbeit eine rotierbare Vakuumkammer entwickelt die nach dem Vorbild medizinischer Tomographen in mehr als 5000 Winkelschritten um den Strahl herum fahren kann, dabei ein Vakuum von mindestens 10-7mbar aufrecht erhält und einen Platzbedarf von weniger als 400 mm in der Strahlstrecke einnimmt. Zum anderen muss die Implementierung der Tomografie durch eine Angabe von schematischen Schritten und Entscheidungen vereinfacht werden. Eine Strahltomographie muss immer auf ihren jeweiligen Zweck hin implementiert werden, da Einzelelemente der Tomografie wie beispielsweise Messvorrichtung und dadurch die Profilanzahl, zu verwendender Tomographiealgorithmus, zu bestimmende Parameter sich je nach Einsatz unterscheiden können. Jedoch können die dazu nötigen Entscheidungen in ein Schema eingeordnet werden, welches die Implementierung der Tomographie vereinfacht und beschleunigt. Hierzu wurde in dieser Arbeit eine Diagnosepipeline und ein Entscheidungsschema eingeführt, sowie die Implementierung nach diesem Schema am Beispiel einer Strahltomographie für die Frankfurter Neutronenquelle (FRANZ) demonstriert und die entsprechenden Fragen und Entscheidungen diskutiert. Es wird gezeigt, wie sich aus den Messdaten über die Aufbereitung der Daten durch die Tomografie die erforderlichen Standardstrahlparameter für ein Monitoring gewinnen lassen. Zusätzlich wird ein Ebenen-Modell eingeführt, über welches nicht-Standardparameter oder neu modellierte Strahlparameter für detaillierte Analysen der Strahldynamik über die Standardparameter hinaus entwickelt werden können. Diese Arbeit soll ein grundlegendes Konzept für die routinemäßige Implementierung der Tomographie in der Strahldiagnose zur Verfügung stellen. Für die Verwendung zum Monitoring im Strahlbetrieb muss die Bestimmung von Standardparametern noch wesentlich im Zeitaufwand verbessert werden. Die Verwendung der Phasenraumtomographie benötigt noch eine Idee um den arcustangensförmigen Verlauf der berechneten Phasenraumrotationswinkel mit der Forderung der FBP nach äquidistanten Projektionswinkeln verträglicher zu machen.